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We have greatly extended an earlier calculation of the charmonium spectrum on three flavor dy-

namical quark ensembles by using more recent ensembles generated by the MILC collaboration.

The heavy quarks are treated using the Fermilab formulation. The charmonium state masses are

in reasonable agreement with the observed spectrum; however, some of the spin splittings may

still be too small.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.

P
o
S
(
L
A
T
2
0
0
5
)
2
0
3

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Onium Masses with Three Flavors of Dynamical Quarks Steven Gottlieb

1. Introduction

Calculating the spectrum of onium states is a significant challenge for lattice gauge theory.
A number of levels can be studied for both charm and bottom quarks. However, dealing with
heavy quarks requires special care [1, 2]. Using improved staggered sea quarks [3], it is possible
to reproduce many of the most important features of the spectrum [4], which had not been done in
the quenched approximation. This paper updates our work presented at Lattice 2003 [5].

2. Calculational Details

Ensembles for three lattice spacings were provided by the MILC Collaboration [6]:a≈0.18 fm
(“extra-coarse”),a≈0.12 fm (“coarse”), anda≈0.086 fm (“fine”). (See Table 1.) For the extra
coarseamq / ams = 0.6, 0.4, 0.2 and 0.1; for the coarse lattice, we also have 0.14, but we have
only analyzed two values 0.4 and 0.2 for the fine lattice. From400 to 600 configurations have
been analyzed in most ensembles. The most notable exceptionis the coarse ensemble withamq /
ams = 0.1. For each of the lattice spacings, the scale of each ensemble with different sea quark
masses was kept approximately fixed using the lengthr1 [7, 8] from the static quark potential. The
absolute scale from theϒ 2S–1Ssplitting was determined by the HPQCD/UKQCD group [9, 4] on
most of our ensembles implyingr1 = 0.318(7) fm.

amq / ams 10/g2 size volume config. a (fm)

0.0492 / 0.082 6.503 163×48 (2.8 fm)3 401 0.178
0.0328 / 0.082 6.485 163×48 (2.8 fm)3 331 0.177
0.0164 / 0.082 6.467 163×48 (2.8 fm)3 645 0.176
0.0082 / 0.082 6.458 163×48 (2.8 fm)3 400 0.176

0.03 / 0.05 6.81 203×64 (2.4 fm)3 559 0.120
0.02 / 0.05 6.79 203×64 (2.4 fm)3 460 0.120
0.01 / 0.05 6.76 203×64 (2.4 fm)3 593 0.121
0.007 / 0.05 6.76 203×64 (2.4 fm)3 403 0.121
0.005 / 0.05 6.76 243×64 (2.9 fm)3 136 0.120

0.0124 / 0.031 7.11 283×96 (2.4 fm)3 261 0.0863
0.0062 / 0.031 7.09 283×96 (2.4 fm)3 472 0.0861

Table 1: Ensembles used in this calculation.

We use the Asqtad improved staggered sea quark action that has errors ofO(αsa2). The im-
proved gluon action has errors ofO(α2

s a2). For the heavy valence quarks, we use the Sheikholeslami-
Wohlert action [10] (which hasO(αsa) errors) with the Fermilab interpretation [2]. To compute
heavy quark propagators, we use point and smeared sources and sinks. The smearing approximates
1S or 2S wavefunctions. At the sink, spatial momentum 2π/(La)[px, py, pz] is given to the onium
state. We restrict the range ofp such that∑ p2

i ≤ 9.
To find the onium masses, we fit two channels simultaneously for the zero momentum states.

A delta function and a 1S smearing wave function are used as the source and sink. The ground state
and up to three excited states are included in the fit. The minimum and maximum distance from
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the source are varied, and the best fit is selected based on theconfidence level and size of error in
the ground state and first excited state masses. After choosing the fit range, 250 bootstrap samples
are generated to provide an error estimate.

We must tune the hopping parameterκ to the charm or bottom mass. For each lattice spacing,
we select a sea quark mass independent value forκ . The tuning is done on an ensemble with small
sea quark mass. In fact, as this project was done in conjuction with a study of heavy-light mesons,
the tuning was done for theDs mass. The precision of that tuning was only about 8%. Becauseof
lattice artifacts that arise for heavy states, we distinguish between the rest massaM1 and the kinetic
massaM2. We useκ = 0.120, 0.119 and 0.127 on the extra coarse, coarse and fine ensembles,
respectively. The imprecision of our tuning is immediatelyseen in Fig. 1.

Figure 1: The kinetic masses ofJ/ψ andηc on each ensemble plotted as a functionmq/ms the light sea to
strange quark mass ratio. Masses are in units ofr1. The physical masses are shown as lines.

The kinetic masses have two disadvantages: their statistical errors are large compared to those
of the rest masses, and the pattern of systematic errors is more subtle [11]. However, for level
splittings, a large discretization effect in the quark’s rest mass drops out of the energy differences
of hadron rest masses [12]. So, having tuned to approximately the right charm mass, we will now
consider splittings based upon the rest masses of the various states. These states have been studied:
ηc(1S), ηc(2S), ψ(1S), ψ(2S), hc(1P), χc0(1P) andχc1(1P). Theχc2(1P) is also under study with
a nonrelativisticP-wave source [13]. Currently, results forχc2(1P) are only available on one extra
coarse ensemble. We also use the spin-averaged mass,e.g., 1S= [3Mψ(1S) +Mηc(1S)]/4 to display
some of the splittings in the spectrum.

3. Results

For each lattice spacing, we plot the splittings as a function of the mass of the light sea quarks.
A linear chiral fit is made and the splitting is extrapolated to the physical value of ˆm= (mu+md)/2
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where the lattice spacing dependent value of ˆm is determined from analysis ofπ andK meson
decays constants [14]. The light meson decay constant analysis has not yet been completed on the
extra coarse ensembles, so the value of ˆmused there is only a rough estimate.

Figure 2: (left) The chiral extrapolation of the spin-averaged splitting between the 2S and 1S states on the
extra coarse and coarse ensembles. The extrapolated valuesare shown in red, and the physical value in black.

Figure 3: (right) The splitting between theχc1 (3P1) and spin-averaged 1S states on the extra coarse and
coarse ensembles.

Within our current statistical uncertainties, we see reasonable agreement with the experimental
value of the splittings of the spin-averaged 2S and 1S levels. The coarse value is about 2σ high.
(See Fig. 2.) As we do not yet have a full set of results for theχc2, we cannot construct the spin
average of the 1P states. Instead, we use theχc1 and thehc. In nonrelativistic potential models,
these two states are degenerate with each other and the spin average. The experimental splittings
are well reproduced for these states. (See Figs. 3 and 4.)

As seen in Fig. 5, the spin splittings are too small. ForJ/ψ andηc it amounts to about 10–22
MeV. The splitting is 19% too small for the extra coarse ensemble, 14% too small for the coarse,
and 9% too small for the fine. The splitting seems to systematically improve as the lattice spacing
decreases. We have not yet attempted a continuum extrapolation.

The overall agreement between this calculation with dynamical quarks and the observed spec-
trum is very good. The most obvious issue is the smallness of spin splittings, as seen in theJ/ψ
– ηc splitting, and the mass of theχc0 state. There is some evidence of improvement as the lattice
spacing is reduced.

4. Outlook

There are several ways to improve this calculation in the near future: We can include another
fine ensemble withmq = 0.1ms. This more chiral ensemble is still being generated, but is far
enough along that it would be worth starting the analysis. Wealso need to examine alternative fits
to the ones that were selected by our automated procedure. Fermilab/MILC are almost finished
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Figure 4: (left) Same as Fig. 3, except for thehc (1P1).

Figure 5: (right) Splitting betweenJ/ψ andηc for all three lattice spacings. There are only two ensembles
for the fine lattice spacing, shown in purple.

Figure 6: Charmonium spectrum for all three lattice spacings compared with experimental values. Energy is
offset so that zero represents the spin-averaged 1S energy.From left to right for each state, crosses, octagons
and diamonds are from the extra coarse, coarse and fine ensembles, respectively. The extra coarseχc2 value
without chiral extrapolation is the fancy cross.

generating a new set of ensembles at a lattice spacing between extra coarse and coarse. Production
running on additional ensembles for the newP-wave code will be done. We also plan to use
heavier quarks to study bottomonium, which has already beenstudied on these configurations using
NRQCD [9].

In the longer term, MILC is generating new ensembles witha≈ 0.06 fm that should help us
better understand the continuum limit. However, in the current calculation, lattice spacing depen-
dence does not seem very large compared with statistical errors for most states.

We gratefully acknowledge the support of the Department of Energy. In addition, the Fermilab
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