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1. Introduction

The oscillations of the systeBf — B° are one of the crucial topics in particle physics. Their
understanding represents a challenging bridge towards the numetieahdeation of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and a severe test of the Standar@IM®olde transition ampli-
tude responsible for the mixing,

8
(Bl +an|B°) = 5 TEmEB, (1.2)

is mediated by the four-quark operaiGy . aa = (by,d)(by,d) + (by, ysd) (by,ysd). It has been
shown that the renormalisation of such operators is non-trivial in Wilsa+#gularisations, re-
sulting in a mixing with other four-quark operators [1]. Here we propost&rategy to compute
the matrix element, based on the static approximation of the heavy quark pluddpgoa of
a tmQCD regularisation for the light one. It will be proved that, following thassumptions,
the mixing under renormalisation is eliminated. Of course, the potential resulte qgfroposed
approach constitute an intermediate step to the physical solution, as they encshdidered in
view of the calculation of heavy quark subleading corrections and/omiolk&iions to relativistic
calculations performed at accessible heavy quark masses [2].

2. Operator mapping in tmQCD

In order to implement our strategy, we start by fixing the notation. @haark is replaced by
an infinitely massive quark, described by a pair of static fi€lis ¢,) propagating forward and
backward in time, whose dynamics is governed by the Eichten-Hill actiomf{2jr{e of its ALPHA
variants [4]),

S n, il = @y [P () gy (X) — Pr(X) Doi(x)] (2.1)
X
On the light quark side, the degrees of freedom are representedibysqin double'(,U[T = (u,d),
made of arup and adownquark, and described according to the tmQCD action

ST =aty {n(x) [P+me+ipt’ys] (%)} - (2.2)
X
The equivalence of this regularisation to ordinary QCD, established jis[6ased on axial trans-
formations of the quark fields (plus the corresponding spurionic tramsftions of the mass pa-
rametersm, and ), which induce a rotation of composite operators between the two theanies. |
particular, for the operator under study one has

(O +an)3°° = coga) (v an)R 2% —isin(a) (Rmav )R 207 (2.3)

where the terms have to be interpreted as operator insertions in renorm@alsed functions in
the continuum limit, and a mass-independent renormalisation scheme is asdemtieding the
notation of [6], the twist anglexr depends upon the renormalised mass parameters through the

Iwe will always work in the so-called twisted basis. For a discussion of thiel@m in the physical basis, see [5].
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relation tarfar) = pe.r/Me:r, and (2.3) is an identity holding at each valuecof In particular, at
a = /2, which is known as thaully twistedcase, (2.3) simplifies to

QCD

(Owainn)g = —i (ﬁVA+AV)gnQCD’n/2 . (2.4)

In this way, Oy 1 aa in standard QCD is mapped onto its countergart. ay in tmQCD. Using the
mass independence of the renormalisation scheme, we will show in the oEghdhatoya  ay
renormalises multiplicatively in the static approximation, which represents the meamtage of
using the above mapping. In this sense, the proposed approachergpras extension to the static
case of the tmQCD framework used to determineBkgarameter [7, 8.

3. Renormalisation pattern

We now concentrate on the renormalisation properties of heavy-lightdioark operators,
with the aim of proving that\,s  avy renormalises multiplicatively. Unfortunately, for brevity’s
sake, we skip algebraic details [10]. We start by considering genariedfioark operators

1 _ _ _
Ofyr, = > (T 14n) (Yl 242) £ (Pl 1) (Pl 24n)] (3.1)

wherel 1 > represent Dirac matrices. In principle, operators correspondingfereiift Dirac struc-
tures could mix among them under renormalisation, thus giving rise to a matigxmatisation
pattern; consequently a complete basis of such operators must be cedsgieh as

parity—even: Qi = Oy aa - parity—odd : 27 = Oys v
Q; = Ogs,pp> 2; = Ogpyps
Q; =OWy_pa - 23 =00 pv
Q; = Ogs pp 25 = Ogp ps- (3.2)

The renormalisation matriZ, whose size is in principle 8 8 (mixing betweent and— operators
is trivially excluded), can be constrained through symmetry argument&n@ivsymmetry of the
theory, and the matri that implements a symmetry transformation at the level of the operator
basis, it is sufficient to require that is invariant under &-rotation [9], i.e.

Z =070 1. (3.3)
The symmetries we use are:

e Parity. It prevents the mixing among operators with opposite parity. After implementing it,
the renormalisation matri¥ is reduced to a block-diagonal form, where twg 4 diagonal
blocks describe the mixing of the parity-even and parity-odd operatoragthemselves.

e Chiral simmetry. It is useda la [1]: were chirality respected by the regulator, there would
be no chance of mixing among different chirality sectors. The mixing due to tifeokV
chirality breaking in the parity-odd sector can be represented accamlihg form

25\ [(ZE%5 0 o 0 0 ahah\] (2
2| |z o o |l o omallla]| o,
2 0 0 25 % sian 0 0 ||ler] @
2:), \ o o 2% shon 0 0 )|\ 2;
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where the coefficients; are scale dependent, while thg’s are not.

e Heavy quark spin symmetry and H(3) spatial rotations We then consider two finite spin
rotations of the heavy fields, plus two lattice spatial rotations of both healligtnt fields

heavy quark spin rotations: Uh — hyeys,  Un— Unye)s,
Un— Gnyays, Uy — ryah,
lattice spatial rotations: %(1— 2) rotates thel axis onto the axis

%#(1— 3) rotates thel axis onto th& axis.  (3.5)

After a change of basis and some tedious algebra, the parity violating lddokes to

97 #*0 0 0 0 0AF O 2f
27+42;| _ [0z 0 0 |00 0465 || |2f +42; 3.6)
254225 |0 02ZF 0 A; 0 0 Of]||25+22f '
Qi zgi e 0 0 02 0A; 0O 95 —29;

e Time reversal. We finally consider a time reversal transformation of the quark fields:

Uh(X) = YYsWh(XT),  Wh(X) = yoysth(XT),  Wk(X) — W¥suk(x’), k=1,2. (3.7)

It further constrains the parity-odd block by forcing the residtyatoefficients in (3.6) to
vanish. Purely multiplicative renormalisation &, , », follows therefrom.

4. Renormalisation in Schrédinger Functional schemes

We use the Schrddinger Functional (SF) to define a family of finite volumermeadisation
schemes, in view of a non-perturbative study of the running ofthg s, operator. Our approach
closely follows here refs. [7], to which the reader is referred forxptened notation. We first
introduce bilinear boundary sourcesgt= 0, T (beingT the time extension of the SF),

ysﬁz - a z Zsl rZSQ yslisz = a z Zsl rZsQ (41)

whererl is a Dirac matrix and the flavour indices, can assume either relativistic or static values.
Then, we define a set of SF correlators in order to probe the ope@gb,rs

Fit L3 z (X)-#1n[M1]-723[l2])

3
(5% = A Seale]) . = Y (AW Sa) . @42)
k=1

The triple[I'1,I2,T 3] has to be chosen such th?ff is non-zero. The boundary correlatdrsand
k1, which can have eithdight-light or heavy-lightflavour structure, are needed in order to cancel
the renormalisation of the boundary source§fh In practice, we consider ratios of the form

Fi (X0)

hi( )= fhl [fll] [kg]l/Z—a

(4.3)
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and then impose in the chiral limit the renormalisation condition
20 (T/2) = hi (T/2) go—0. (4.4)

Of course, the renormalisation fact@f" depends upon all calculational details, e.g. the light quark
action (Wilson with(out) a clover term), the static action (Eichten-Hill, or its ALP&&kiants),

the choice of the Dirac structuréBs,l",,I3], the value of thef-angle of the SF and the value
of the parametea introduced in (4.3). This richness of degrees of freedom can be ieeghlim
order to identify some optimal renormalisation schemes, according to theajeeguirements of
maximisation of the nonperturbative signal/noise ratio, slowing down of theatgerunning and
minimisation of lattice artefacts.

5. NLO anomalous dimension of2;" from perturbative matching at one-loop order

In order to gain information about the running and its lattice artefacts, we pavformed
a one-loop perturbative calculation of the renormalisation fagfpr in some of the SF schemes
discussed above. Such a calculation allows us to determine the NLO anomiamunsion of2;
via a perturbative matching to some reference scheme in which the NLO angrditoension
is already known. The matching procedure has been illustrated and appliedhl times in the
literature [11, 7, 12], and it will not be reviewed here. The referesdgeme was chosen to be
DRED, where the NLO anomalous dimension®f and its perturbative matching to the so-called
lat-scheme have been computed in [13]. The perturbative expansigi akads

2 dha/l) =1+ Y @7 Y =14 @i+ (D) +o(7)] +ow) 6D
K=1

whereyy = —1/(2m?) is the universal anomalous dimension of the opera#gr, andr] is the
one-loop scheme-dependent finite part, peculiar to the SF and the defimdings listed at the end
of the previous section. The running of the operator is described byepessaling function (ssf),

27" (g0,a/2L)
+ — | 1 ’
%=1 2 (wa/L)

=1+ Y gdo; (5.2)
g%(L)=u k=1

As an example of the running, the ssf.8f at NLO andN; = O is reported as a function of the
renormalised coupling on the left side of Figure 1. The plot refers to tloécehr 1,2, 3] =
[V6, ¥5, ¥5]. The straight line represents the universal LO running, and the lmestsibe the depen-
dence of the NLO anomalous dimension upon the choice @fhen the latter ranges in the interval
[0,1/2]. On the right side of Figure 1 we report a comparison of the lattice artefgats/L) on
the ssf, defined as in [11], between the static-light case and the light-hghtdata from [7]). The
comparison refers to the schemes whigrg M2, N3] = [ys, V5, 5], 6 = 0.5 anda = 0. The light
guarks are discretised according to the unimproved (W) ocifyegmproved (SW) Wilson action,
while the static quarks are discretised according to the Eichten-Hill (EH)ractdthough the
static-light schemes cannot be directly compared to the relativistic onesg\tfienormalisation
of the four-quark correlator is always performed using only the rakitoscorrelators), the plot
shows that the introduction of static quarks does not imply a significantriveane of the lattice
artefacts in perturbation theory.
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Figure 1: On the left side the step scaling function®{ at NLO and\; = O is reported vs. the renormalised
coupling in the SF scheme. On the right side we compare thiedatrtefacts of the step scaling function
between the full relativistic case and the static-lightecd3oth plots are preliminary.
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