
P
o
S
(
L
A
T
2
0
0
5
)
2
1
9

B meson decays at high velocity from mNRQCD

A. Dougall∗a, Kerryann M. Foleyb, C. T. H. Daviesa and G. Peter Lepageb

aDepartment of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
E-mail: adougall@physics.gla.ac.uk

bNewman Laboratory for Elementary-Particle Physics, Cornell University, Ithica, NY 14853, USA

The moving NRQCD (mNRQCD) formalism facilitates the simulation of heavy meson decays
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1. Introduction

At present there is much work being done to establish accurate values for certain CKM matrix
elements and this requires the comparison of theory and experiment for exclusive semileptonic
decays of heavy mesons. For example, a value for the CKM matrix element Vub can be obtained
from the exclusive semileptonic heavy decay B → πlν but only when it is combined with the
corresponding QCD form factor. Theoretically, the calculation of such form factors necessitates
a non-perturbative handling of QCD, to which the lattice is ideally suited. Indeed, current lattice
simulations work well within the low recoil region (high q2). However, gaining access to the full
kinematic regime is problematic due to the fact that the final state meson can have large recoil
momentum in the rest frame of the initial heavy meson, resulting in large discretisation errors and
noisier signals that increase the statistical error. Thus comparisons between theory and experiment
have been restricted to the low recoil region. Accessing the form factors at high recoil is particularly
important since much of the experimental data lies within this kinematic region.

The ultimate goal of this work is therefore to extend the form factor calculations to cover
the entire kinematic range. These techniques can be applied to different semileptonic decays, but
here we focus on the most extreme case, B → πlν . Lattice calculations are usually carried out in
the rest frame of the B meson, however, the approach in mNRQCD is to treat the B meson in a
moving frame, whilst maintaining control over the systematic errors. This is achieved by finding
the optimal reference frame in which the discretisation and statistical errors are minimised, and
then using a mNRQCD action to prevent large discretisation errors associated with the B meson.
The central argument for this approach is that although the heavy quark carries almost all the heavy
meson momentum, the internal dynamics of the meson are essentially non-relativistic. Previous
work in this field includes [1, 2, 3].

1.1 Reference frame

For the most extreme kinematic case, q2(= p2
B − p2

π) = 0, we need to find a frame that min-
imises both the statistical errors that depend on the average kinetic energy, and the discretisation
errors that depend on the momenta. In the case of the statistical errors, the frame in which the
kinetic energy is at a minimum is pB = pπ . However, it is possible to have pπ lower as larger
values for pB can be dealt with using more elaborate sources to reduce the statistical error. The
discretisation errors are analysed by considering the momentum flow within the B and π mesons
and the optimal frame lies within these bounds.

By choosing a reference frame in which the B meson is moving, this reduces the error associ-
ated with the pion’s momentum, but increases the error from the B meson’s momentum. However,
most of the B meson momentum is carried by the b quark and so we can construct a moving
NRQCD Lagrangian to deal with this. To minimise errors associated with the light quark action
and light meson momentum, it is essential that the light quark action is O(a2) improved.

1.2 mNRQCD

In constructing the mNRQCD Lagrangian, the total momentum of the b quark is defined as
Pµ

b = mbuµ + kµ , where the first term is the average momentum and uµ = PB/mb = γ(1,v) is the
4-velocity. The second term, kµ is the residual momentum, which is of the same order as the
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light quark’s momentum. The strategy is to treat the b quark’s average momentum exactly, whilst
discretising the residual momentum. The mNRQCD Lagrangian can be derived in two ways. One
can either start with the NRQCD Lagrangian (derived from the FWT transformation on the usual
relativistic quark fields) and boost the fields, or, one can re-write the Lagrangian in terms of boosted
fields and then perform the FWT transformation, we outline the latter. Further details are given in
Ref. [4].

In the NRQCD formalism, the FWT transformation is applied to the quark fields in order
to decouple the quark from the anti-quark, greatly simplifying the numerics. It also removes the
rest energy from the Lagrangian, thus leading to smaller discretisation errors. The decoupling is
performed as an expansion in the heavy quark mass or the internal quark velocity and is optimal
for small 3-momentum. However, the heavy quark in B decays has very large 3-momentum that
is boosted with respect to the lattice frame (Pb) and therefore it is not possible to apply a FWT
transformation on the fields. However, by re-writing the Lagrangian in terms of boosted fields and
operators, a FWT transformation can then be applied

Ψ = Λ(v)√γ Te−imu.xADt

(

ψv

χv

)

; Λ = 1√
2(1+γ)

(

1+ γ σ .v
σ .v 1+ γ

)

to give the mNRQCD Lagrangian

L = ψ†
(

iDt + iv.D+
D2

2γm
− (v.D)2

2γm
+

σ .B̃
2γm

. . .

)

ψ .

In addition to the usual terms appearing in the NRQCD Lagrangian, there are now terms that are a
function of the 3-velocity of the b quark, v.

2. Details of current work

Here we define the time evolution operators that are currently being tested and outline the
details of the lattice calculation.

2.1 mNRQCD action

From the mNRQCD Lagrangian, the time evolution operator is given by

H =

(

1− aH0

2n

)n

t

(

1− δH
2

)

t
U†

4,t−1

(

1− δH
2

)

t−1

(

1− H0

2n

)n

t−1

Early tests have been carried out for the simplest action, where

H0 = − ∆(2)

2mQ
−v.∆(±) +(v.∆(±))2

(

cv

2mγ
+

cct

2n

)

,
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and tests are now being carried out on the fully O(1/m) improved case, where

δH =
σ .B̃
2mγ

− cc,1

mγ
{v.∆(±),∆(2)}− cc,2

mγ

(

v.∆(±)
)3

+
cc,6

6
vi∆+

i ∆±
i ∆−

i

cc,7

mγ
∆(±)(4)

+

(

cc,8

mγ
+

cc,9

n1

)

{v.∆(±),vi∆+
i ∆±

i ∆−
i }.

Note that all the coefficients (labelled c) are 1 at tree-level.

2.2 Simulation details

This work was carried out on a 123×24 lattice with inverse lattice spacing a−1 = 1.36(14)GeV
(set from Upsilon splitting) for a data set of 243 quenched configurations. The light quark propa-
gators were generated using clover fermions (κ ∼ κs). Gaussian smearing was used at the source
and both local and Gaussian smearing was used at the sink. The heavy quark propagators were
generated using both the simplest and O(1/m) improved action. Local and APE smearing was
used at both source and sink. The heavy quark mass (amQ) ranges from 2-8, where 4 corresponds
to the mass of the b quark on this lattice and we looked at a range of velocities, v/c = 0−0.8.

3. Perturbation theory

As with NRQCD, mNRQCD is constructed from a set of non-renormalisable interactions,
each of which is accompanied by a coefficient which must be calculated perturbatively in order to
obtain physical results. The one-loop parameters which make up the self energy include the energy
shift, mass and wavefunction renormalisation and also, the velocity renormalisation which results
from the division of the total heavy quark momentum into average and residual pieces. A remnant
of reparameterisation invariance on the lattice prevents this coefficient from becoming too large.
The inverse quark propagator can be written as a combination of the free propagator and the heavy
quark’s self energy,

G−1 = Q−1 −aΣ(k)

= −ik4 −αsΩ0 +αsik4Ω1 +v.k−αsv.kΩv + . . .

= Zψ

(

−ik̄4 +
k2

2γRmR
+

PR.k
γRmR

+ . . .

)

where the renormalisation constants, eg. Zψ , are expressed in terms of the coefficients, Ωn, appear-
ing in the self energy. The value of each Ωn is obtained by differentiation, further details of which
are given in Ref. [5].

4. Testing mNRQCD

There are a variety of quantities that can be computed (for both heavy-heavy (HH) and heavy-
light (HL) mesons) at different values of the bare velocity in order to check that mNRQCD is
working correctly and that the renormalisations, such as ZP, are under control. Such quantities
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Figure 1: The HH kinetic mass as a function of the
velocity from the simplest mNRQCD action.
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Figure 2: The HL ground state and binding energy
at zero residual momentum. Note that binding en-
ergy is constant with increasing velocity.

include the kinetic mass, the binding energy, decay constants and energy splittings. The kinetic
mass, Mkin is extracted from the dispersion relation

Ev(k)+C =
√

(ZPP0 +k)2 +M2
kin

where P0 = γmv. Figure 1 shows that the kinetic mass (for the HH meson) is fairly constant as a
function of the bare velocity, an important feature as it means that the bare quark mass will not have
to be retuned to give the correct quark mass as the velocity increases. In figure 2, we plot the ground
state energy, Esim and the binding energy (= Esim −E0), where E0 is calculated from perturbation
theory. The velocity dependence has largly been removed in the subtracted case. In figure 3, we
compare the non-perturbative and perturbative values for the momentum renormalisation ZP. The
non-perturbative result uses the dispersion relation to compute ZP from Ev(k). Figure 4 is a plot
of the ηB decay constant from the A0 channel from both NRQCD and mNRQCD. The plot is a
ratio of the decay constant at varying total momentum (Ptot) over zero Ptot. In the NRQCD case,
the discretisation errors become dominant at very low Ptot, whereas the mNRQCD ratio is constant.
Figure 5 shows the same ratio but the numerator comes from the Ak channel. This is slightly larger
than one, but should come down to one as relativistic corrections are included. Finally, in figure
6 we present a preliminary plot for the hyperfine splitting in the HH case from the NRQCD and
O(1/m) improved mNRQCD action.

5. Summary

We have presented a number of quantities computed from mNRQCD that demonstrate its
applicability to high recoil processes in which the heavy quark carries large external momentum.
Future work will focus on computing the B → π form factor. Due to the complicated nature of
a 2-loop perturbative calculation, the intention is to employ numerical techniques to obtain the
associated renormalisation coefficients.
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Figure 3: Comparison between the simulated and
perturbative velocity renormalisation in mNRQCD.
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Figure 4: Comparison between the ηB decay con-
stant from the A0 channel in NRQCD and mN-
RQCD. The mNRQCD data is plotted for two dif-
ferent values of the the residual momentum.
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Figure 5: The ratio of the ηB decay constant from
the Ak channel and the A0 channel. Note there is
no leading order term in the NRQCD case, so the
leading order answer is zero.
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Figure 6: Comparison of the HH hyperfine splitting
in NRQCD and O(1/m) improved mNRQCD.
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