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B — D*lv with staggered chiral perturbation theory

1. Introduction

The CKM element/y, is important for the phenomenology of flavor physics in determining
the apex of the unitarity triangle in the complex plar¥e,| can be determined from inclusive
and exclusive semilepton decays, and they are both limited by theoretical uncertainties. The
inclusive method makes use of the heavy quark expangj®],[but is limited by the breakdown
of local quark-hadron duality, the errors of which are difficult to estimate. The exclusive method
requires reducing the uncertainty of the form fac#y .p-, which has been calculated using lattice
QCD in the quenched approximatioB| [ In an effort to eliminate the errors due to quenching, as
well as to reach lighter quark masses, we anticipate using lattices with 2+1 flavors of light staggered
guarks generated by the MILC collaborati@] fo calculate%g .p-. It is therefore important to
understand the taste violations in this heavy-light system, and for this we use the staggered heavy-
light chiral perturbation theory of Aubin and Berna#.|

We make use of the result from Aubin and Bernard thaD@?) all taste-violations in the
Symanzik action are those of the light quark sed®;¥]. The discretization effects due to the heavy
quarks are not taken into account explicitly in the ChPT, but can be absorbed into the definitions or
the lattice heavy quarks. The heavy-light mesons are combined into a single field

1ty

Ho= ="~
a 2

[V¥Blia — ¥5Bal, (1.1

with the conjugateH, = ywHJy. The light mesons appear in the folin= g2 = exp2i®/f],
where® is al2 x 12 matrix that contains the pions

U mt K+
®o=| m™ D K°
K- K’ s

(1.2)

)

whereU = Z(ﬁanTa, etc andT, = {ESaiEuSJEHVa éuéi
The calculation makes use of an expansiomdr{the light quark mass}?, and the heavy-light
residual momentum. The Lagrangian is

£ = itrp[HavH (8apy + V%) Ho] + gntro[HaHoy! AP + Leer,
(1.3)

whereV, = (i/2)[cTd0 + 0d,07], andA, = (i/2)[cTdo — gd,a']. The leading correction to
this Lagrangian at/m. relevant for this calculation is

Ao
me
and gives rise to the splitting between B@ndD* masses); = —FA© = —(mp. —mp). The

staggered light Lagrangian is
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f2 2B 2mg
29 = 5 tr[duZO“Z}+T0tf[XTZ+ZTX]+T(U| +Di 48 +..)2+aY,
(1.5)

where

¥ = chﬁﬁgckﬁk,, (1.6)

are taste breaking operators that can be found]inTlhe primed operators are taste non-diagonal,
while the unprimed operators are taste-diagonal. The terms irlEB)gfve rise to the NLO chiral
logarithms. There are additional terms not shown in this equation coming from a new taste-breaking
potential that involves both heavy and light mesons, and although this potential is of higher order
than the terms in Eq1(3), they can contribute analytic terms at NLO.

2. Obtaining [Vgp)|

The differential rate for the semileptonic deddy- D*IV; is

2
= oE (e — o) Va2 — 19 (W) Vel o (W) (2.1)
wherew = V - v is the velocity transfer from the initial state to the final stétéw) is a kinematic
factor and.-#g_p- is a matrix element which must be calculated nonperturbatively. This matrix
element is a combination of several form factors, but at zero recoil it simplifieggtop- (1) =

ha, (1). Heavy quark symmetry plays an important role in constraihigl), leading to the heavy
quark expansiorg, 9]

ly 2l Ip

ha (1) = na|1— n _ ,
M) = A 11 e 2meems — Zmy)2

(2.2)

up to orderl/mé. The above works were generalized to lattice gauge theodCn Thel’s are
long-distance matrix elements of the heavy quark effective theory (HQET).

It was realized that thedés could be computed precisely by making use of the double ratios
of various matrix elements at zero recd]:[

(D[cysb|B) (B|byac|D) ,
W= Bovom M 2.3
* = (DlcycD) By I 2.3)

D*[cyab|B") (B”|byac|D*
oy = DIOHDIB )8 CD) _ 1, 32 @.4)
(D" [cysc D) (B'[bysblB
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(a) (b)

(c)

Figure 1. One-loop diagrams that contribute Bo— D*. The solid line represents a meson containing a
heavy quark, and the dashed line represents light mesons. The small solid circles are strong vertices anu
contribute a factor ofy;. The large solid square is a weak interaction vertex. Diagram (a) is a vertex
correction, and (b) and (c) correspond to wavefunction renormalization.

D*[cy;ysb[B) (B”|byiysc|D) |~ 2
T, — ( *|7 1 ¥50)| ><7*!71 \7> ~ A (1)]
(D*[cy; ¢/ D) (B [by;ysb|B)

(2.5)
Statistical fluctuations in the numerator and denominator are highly correlated and therefore cance!
in the ratio. The normalization uncertainty in the lattice currents also largely cancels in the ratio.
Thus, all uncertainties scale &— 1 rather than asZ. Making use of the heavy quark expansions

of the above double ratios, we can obtain the tHfeereeded to construdty, to orderl/mé

(Eqgl2.2), one from each ratio.

-

h.(1) = nv ll"P(zifzrt,) , (2.6)
1 1 \?]

hi(1) = nv [1-1Iv <2mC—2mo> ) (2.7)

. . 1 1 \?

P (1) = ia ll—lA (a2 ] , 28

whereny andna are short-distance coefficients of HQET.

3. Chiral corrections to B — D* at zero recoil

The one loop diagrams that contributeBe— D* are shown in Figl. In general, the light
mesons represented by the dotted lines in/Eigclude one or more insertions of the hairpin dia-
grams (seeq]) for the singlet, axial and vector taste flavor-neutral mesons. The original continuum
ChPT result was obtained by Randall and Wik#,[and was generalized to the partially quenched
case by Savagdp|. The result for the 2+1nG, = my # ms) full lattice QCD case including taste-
breaking terms is
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A1) = X i ST S 251 ng—mzm _
W) = 14 T agrz |2t P g <<n%v—mzm><rrﬂm—nﬁfm
Mg, — M8 _ mg, —me, B
" 23 Fov + > Fro |+ (VoA
™ ) T
(3.1)
whereF; =F (mj,—A(C)/mj), and
e me
F(mj,x):)('{x3ln/\i—§x3—4x+2n
~V@=10¢+2) (In [1-2x(x— VX2~ 1) ~im) }

with g theD* — D — rrcoupling,A© = mp- — mp = 142MeV andX, is a term that is independent
of the light quark masses that must exactly cancel the scale dependence of the logarithms. Ir
principle, this term also contains taste-breaking contributions which vanish as the lattice spacing
goes to zero. From the discussion after Edfwe see that th® — D* splitting begins at/m, so
that the one-loop chiral corrections to the above formula begliraf. We do not account for the
smaller deviations of thB-quark mass from the heavy quark limit in this calculation.

Fig.2is a plot ofha, (1) vs m?, illustrating the importance of accounting for staggered effects
in the chiral limit. The part of the graph that asymptotes to a straight line is a guess (based on
the earlier quenched resu8l]] as to what a linear fit to data points might look like for the MILC
lattices forha, (1). The curves add to the linear behavior the contribution from the chiral logs with
gr = 0.60. The curve with the large cusp is the continuum extrapolated curve; the one without
the cusp also includes the staggered effects with values determined from the MILC coarse lattices
(a=0.125fm). The way the procedure for the extrapolation would work in practice is one would
fit lattice data to Eqg.3.1), and then the taste-breaking effects would be eliminated by setting the
terms proportional t@? in Eq. (3.1) to zero. The staggered data are expected to be linear, even
when the continuum result is not; this is a characteristic effect of taste-breaking terms due to the
mass-splittings of the different taste pions. However, simulations would not likely be sensitive to
the cusp anytime soon even if staggering did not smooth it out, given that the cusp only occurs at
values very close to the physical pion mass. In this case one is especially dependent on the ChPT
in order to extrapolate to the physical light quark masses.
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Figure 2: These curves add to linear behavior the contribution from chiral logsgyith 0.60. The curve
with the large cusp is the continuum extrapolation; the one without the cusp includes also the staggerec
effects.
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