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is discussed. Only two quantiti@®; , have to be considered in order to match QCD and HQET,
since the spin-dependent interaction is easily eliminalgel to the spin symmetry of the static
theory. Quite simple formulae relate the renormalizatimug invariant b-quark masb) to the
B-meson mass. All entries in these formulae are non-peativdly defined and can be computed
in the continuum limit of the lattice regularized theory.rfloe numerically most critical part, we
illustrate the cancellation of power divergences by a nigakexample.
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1. Introduction

Although HQET is the most natural effective theory for heavy-light systeits lattice reg-
ularized version has practically only been used at lowest order. dndestrategy to overcome
the problem of power divergent mixings [1], was only found ratheendly [2]. Its potential was
demstrated by a computation of the b-quark mass to lowest non-trivial ordeim, the static
approximation. Here we fill the formalism of [2], sketched in the abstract, pritlaticable defini-
tions in terms of Schrodinger functional correlation functions and giverarete formula for the
1/m-correction to the quark mass.

Neglecting ¥n? corrections — as throughout this report — we write the HQET Lagrangian

LHQET = LstaX) — WspinFspin(X) — Wkin Ckin(X) (1.1)
Ospin= YnhOBYnh, Okin = YDy, (1.2)

such that the classical values for the coefficientsagig = wspin= 1/(2m). Since expectation
values

(O) = (O)statt+ Win (O)kin + Wspin{ O) spin; (1.3)
(O)in = Z<ﬁﬁkin(x)>stat7 <ﬁ>spin: z<ﬁﬁspin(x)>stat (1.4)

are defined througimsertionsof the higher dimensional termn, Ospin in the static theorythey
are renormalizable by power counting. However, in order to have a wétietl continuum limit
the bare, dimensionful, couplingsin, wspin have to be determined non-perturbatively [1, 2]. In the
framework of lattice QCD, this is possible by matching a number of observabjes=1...n,
between QCD and HQET, thus retaining the predicitivity of QCD. It is esdeotiaote that this
matching can be carried out in a finite volume of linear extgnt 0.4fm, where heavy quarks can
be simulated with a relativistic action [2, 3, 4].

Since the lowest order theory is spin-symmetric, it is trivial to form spirrayes which are
independent ofuspin. One thus expects that= 2 is sufficient for a computation of the quark mass
(in addition toaxn there is an overall (state-independent) shift of energy levels, whictiemete
by myare). For unexplained notation we refer to [2].

2. Basic observables

We consider the spin-symmetric combination

£290,T) = 2 {fa(ys) Y * {Fa(y1) Y%, (2.1)

formed from the boundary to boundary correlation functions
12
a

L) =25 Y (3WrGmEGLOrae) (22)

uVvy,z

of the QCD Schrddinger functional of sidex L2 and a periodicity phase [5] for the quark fields.
Replacing the b-quark field by the effective figlgl, using e_q.(1.3,1.4), and accounting for the
multiplicative renormalization of the boundary quark fiefds one finds the Im expansion

f2V = 72 726 Ml [ £5190 gy £HI0) (2.3)
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where the aformentioned energy shifi,,centers. Deviating from the choice in [2], we now define

®1(L,M) = In(f2(6,T)/{2(6',T)) —In (7*(6,T)/17*(6',T)) (2.5)
for T=L/2,
®y(L,M) = zIn(f{(6, T —a)/f(6,T +a)), (2.6)

with the expansion

®1(L,M) = @anR",  ®5(L,M) =L (Mpare+ M52+ ckinl5™) (2.7)
ff‘”(e,T) ff‘”(e',T)

kKin __ —

= e T) e T) o

rye = Lin (1590, T —a)/ %0, T +a)) (29)
‘ fkin(e T-a) fkin(e T+a)

rkin _ 1 (11 Y _ N \Y, ) 2.1
1 2a <flstat(97-|-_a) flstal(e7-|-+ )) ( O)

3. Step scaling functions

We choosd ; =~ 0.4fm, where a computation @b;(L;,Mp) is possible in lattice QCD (while
at significantly larger values,; /a would have to be too large in order to contedleffects). From
eq. (2.7) one then getsiin, Mpare fOr lattice spacinga = ,_i‘l x 0.4fm. On the other hand, contact
to physical observables, e.g. the B-meson mass is made in large volume, finitersize effects
are exponentially small. For reasonable valagks; = 1/12 andL. ~ 1.5fm at the same lattice
spacing, one needs,/a ~ 50. This situation is avoided by first computing step scaling functions
which connectb;(L1,M) to ®;(L2,M), L, = 2L; and then connecting to large volume.

With the Schrédinger functional coupling= g2(L), everywhere, the continuum step scaling
functionso are defined by

®1(2L,M) = af"(u)d1(L,M), of"(u)= lim Ri"(2L) (3.1)
1 ) — Y1 1L, ) 1 _a/LHO len(L) =R ’
and
®,(2L,M) — 2d5(L,M) = Om(u) + [@xin 2L (T¥"(2L) — 1K (L))] (3.2)
i i . riin(2L) —rkn(L)
kin kin 1 1
= @y (L,M = lim 2L - .
Om(u) + 03" (u) ®1(L,M), 03" (u) a/IL—>O RE'”(L) L)
Here the static step scaling function
Om(U) = a}iLrE 2 [r$22L) - r*(W)] ) - (3.3)

is not identical toom(u) defined earlier [2], sinc€$™ differs from S defined there. Note that
the step scaling functions are independernlobut ®;(L,M) have a mass dependence from fixing
®;(L1,M) in the full theory.

1in the static computation of [2] the logarithmic derivativef the correlation functiorfs of the axial current with
a boundary operator was used as a quantity to match effective theb@D. Including ¥mterms its expansion reads

fo = ZNQETZ, 7,6 M { fataty HQETgstaty oy kin 4 gy o f ,ip'“} , (2.4)

with the term fg}j“due to the Im correction to the static axial current. Whiday,in represents no problem, an extra
observable is needed to fi§}2" Here, we avoid this complication by working exclusively witf.
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4. Largevolume

The connection ofp; to the spin-averaged B-meson masg, is

Lmg — ¢’2(L, M) — [L(EStat— ritat(L))] + [L Win (ékin o r'f”(L))] (4_1)
_ [L(Estat_ I—stat(L))] + (U)(D (L M) (U) = |lim L w
= ' PEVPEAD P00 TR ey

Here we have used the abbreviations

EStat— lim 1 FERL), EXIn — lim rknL), (4.2)

whereES®?s the (unrenormalized) energy in large volume in the spin-averaged miehia static
approximation andui, EX" is its 1/m correction. The hat o0& " is to remind us that this quantity
turns into an energy only upon multiplication with the dimensiomfi}. Its numerical evaluation
has already been investigated in [6]. We (isg braces to indicate combinations which have a
continuum limit by themselves. For example, the two terms in eq. (4.1) can be teinwith
different regularizations if this is useful.

5. Final equation

The above equations are now easily combined to yield }Aned)rrection,mél), to the (spin-

averaged) B-meson mass vlg & 2L,),

me = mgl mb = mgty mi® 4 m{®| (5.1)
Lomg®(M) = [Lo (ES®-$R(L,)) ]+am( 1) +2®5(L1, M) (5.2)
Lzm( >(|v|) o5 (uy) Dy (L, M), — @(L) (5.3)
Lamg = [La( E"'”—F'{'“(Lz))a)km] = p(U2) 07" (Uy) D1 (L1, M).

Again, terms in braces have a continuum limit. Wh"rléla) is purely derived from finite volume,
the termml(glb) involves a large volume computation.
Starting fromM3™@, the solution of the leading order equation,

= M), (5.4

and the slope 1 d
= _mStat = —®y(L1,M , 5.5
dM M:Mks)lat L]_ dM 2( ! ) M:Mgtat ( )

we finally obtain the first order correcti(mél) to the RGI b-quark mass
1
Mo = Mg M M = —=mD. (5.6)

The final uncertainty foMp, due to thel/m expansioris of order O{/\QCD/Mg), which translates
into a numerical estimate of MeV scale. Itis thus clear that other source®ofwll dominate in a
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practical calculation. Note that the precise valuerfigrmatters. One should use the spin-averaged
experimental 1

massimg = 2Mgo + 3mg; = [75279+ 35325 MeV = 5314 MeV if one can extrapolate
to the chiral limit of the light quark or

my P = g+ Smg, — 3me, = [5370+ 3(5325- 5279]MeV = 5405MeV  (5.7)

if one works directly with a strange quark (as light quark). The latter féameglects the depen-
dence of the spin splitting on the light quark mass.

6. Remarks

The following facts are worth noting.

e The 1I/mexpansion in heavy light systems is an expansion in ternfsgeb/m, where all
external scales have to be of ordescp. This applies in particular to our scalf;l. Indeed,
numerically it is rather close thqcp and explicit investigations [3, 4] have shown that the
1/m-expansion is well behaved even wHett is a factor two larger.

e In our static computation [2, 3], we made the more natural choicestead of 1. Although
it is advantageous to udg when one includes the/in terms, the strategy can easily be
formulated withl", at the expense of introducing a third quantltyto fix cy2='. Since this
will certainly be required for the computation of thémt-correction toFg, we will follow
also that approach.

« Note that at each ordéin the expansion, the result is ambiguous by terms of orde 1.
Thus bothMl()1> and M@ have an order Am ambiguity (e.g. they change when is
changed), while in their sumdl, = M5+ Mt(,l) the ambiguity is reduced to/ir?.

¢ In the present formulation of the effective theory, thamiterms approach the continuum
with an asymptotic ratél a, in contrast to the leading order terms where this & [2].

e Let us comment just on one numerical result at that point. The computatioé"t{ﬁl),
eq. (3.2), involves the difference BF"(2L) — rk"(L), where power divergent contributions
cancel. As atypical case we chods@a =12, T /a= 6, and the static action HYP2 (see [7]),
where our simulations yielg?Tk"(2L) = 0.5631(6), a?I'"(L) = 0.55952), demonstrating
a considerable cancellation. A detailed account of numerical resultsssriesl in [8].
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