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A non perturbative method to compute the mass of the b quark including the 1
�
m term in HQET

has been presented in [1]. Following this strategy, we find in the MS scheme mstat
b � mb ���

4 � 350 � 64 � GeV for the leading term, and m � 1 �b � mb �	��
 0 � 049 � 29 � GeV for the next to leading

order correction. This method involves several steps, including the simulation of the relativistic

theory in a small volume, and of the effective theory in a big volume. Here we present some

numerical details of our calculations.
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1. Introduction

The b quark mass enters in the theoretical predictions of B mesons decay rates, which provide
some of the most precise constraints in the unitarity triangle analysis. The Particle Data Group [2]
quotes a value of mb � mb � between 4.1 and 4.4 GeV in the MS scheme, as the result of different
determinations which include lattice computations.

On the lattice, heavy quarks are treated by using effective theories, in particular HQET when
dealing with heavy-light systems. The b quark mass can then be predicted using the mass of
the B meson as experimental input. In this framework, the bare parameters must be determined
non perturbatively, in order to have a well defined continuum limit. This programme has been
completed for the lowest order of the HQET (static theory) in the quenched approximation. The
result from [3], mb � mb ��� 4 � 12 � 11 � GeV is in reasonable agreement with [4], suggesting that the
1 � m corrections to the b quark mass are small. Here we explicitly compute these corrections
following the strategy proposed in [1]. This clearly represents an important test of HQET, which
provides indications about its “convergence”.

The method relies on matching QCD and the effective theory in a small volume. The observ-
ables are then evolved to large volumes where contact with experiments can be established. Such
an evolution is performed in the effective theory. Different systematics errors have to be controlled
in the two regimes. For a precise matching in the small volume a very accurate determination of
the relevant renormalization constants in the full theory is needed. On the other hand, in large
volume simulations the main problems usually concern the separation of the ground state from the
excited states in a given channel. We present details on the numerical evaluation of the various
ingredients entering the computation of the 1 � m corrections to the b quark mass. The increase in
the (numerical) effort is moderate compared to the static case.

2. Finite volume

2.1 Relativistic part

The observables Φ1 � 2 are defined as in eqs. 1 (I.2.5), (I.2.6) by (T � L � 2)

Φ1 � L � M ��� Φrel
1 � L � M �
	 Φstat

1 � L � and Φ2 � L � M ��� L
2a

ln

�
f av
1 � T � a �

f av
1 � T 	 a �� (2.1)

where Φrel
1 � L � M ��� ln

�
f av
1 � θ � T �

f av
1 � θ ��� T �  and Φstat

1 � L ��� � ln

�
f stat
1 � θ � T �

f stat
1 � θ ��� T �  � (2.2)

The observables Φrel
1 and Φ2 are computed in (quenched) QCD, with the O(a)-improved Wilson

action as in [5]. The light quark mass is fixed to be zero. While we use different resolutions
L1 � a � 20 � 24 � 32 � 40, the physical size of the lattice is kept fixed by determining the bare coupling
such that the SF coupling is 2 ḡ2 � L1 � 4 ��� 1 � 88 [6, 5]. Using r0 � 0 � 5fm to convert to physical
units, one finds L1 � 0 � 36 fm. We take three different values θ � θ � � 0 � 0 � 5 � 1 for the periodicity
phases. We want to interpolate our data to the b quark mass, and since according to [3], the value

1We refer to the equations of [1] with a prefix “I”.
2We have not yet taken the error in g2 � L1 � into account. It is expected to be negligible compared to the other errors.
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Figure 1: Continuum extrapolation of Φ2, for L1M � 12

of L1MRGI
b is around 12, we simulate three different values of z � L1M : 10 � 3 � 12 � 13 � 2. For each

of these values Φ2 � L1 � M � is extrapolated to the continuum via a linear fit in � a � L1 � 2 using only
the lattices of resolution L1 � a � 24 � 32 � 40. We confirmed that adding the coarsest lattice does not
change the values of the continuum limit, as one can also see in fig. 1. We then fit the continuum
values - see also eq. (I.5.5) - to the following form

Φ2 � L1 � M ��� Const 	 S � L1M � (2.3)

to find the slope S � 0 � 61 � 5 � . At this point, we note that a source of error originates from the
determination [5] of the (universal) renormalization factor MRGI

b � mSF � 1 � L0 � . It amounts to a one
percent uncertainty on Φ2.

2.2 Effective theory

Using the static actions denoted by HYP1 and HYP2 in [7], we compute boundary to boundary
correlation functions of the QCD Schrödinger functional, but now in the effective theory and for
two values of L. The smaller one is again L � L1, but with the resolutions L1 � a � 6 � 8 � 10 � 12,
corresponding to β � 6 � 2204 � 6 � 476 � 6 � 635 � 6 � 775 respectively and the larger one is L � L2 � 2L1

with the same values of a. As we did for the relativistic part, for each of these volumes and
resolutions, the simulations are done with three values of the time extent, namely T � L � 2 � L � 2 �
a � L � 2 	 a, and three values of the periodicity angles. Following [1], we compute f stat

1 and f kin
1

for these different sets of parameters and from those the functions Γstat
1 , Γkin

1 and Rkin
1 as they are

defined in eqs. (I.2.8 - I.2.10) – at finite values of the lattice spacing.

3. Step scaling functions

Once we have the quantities described in the previous section, we compute the step scaling
functions σm, σ kin

1 � 2 , defined as in eqs (I.3.1 - I.3.3). At finite lattice spacing, we have

Σm � u � a � L1 � � 2L1
�
Γstat

1 � 2L1 � a � � Γstat
1 � L1 � a ��� u � ḡ2 � L1 � (3.1)

Σkin
1 � u � a � L1 ��� Rkin

1 � 2L1 � a �
Rkin

1 � L1 � a �
����
u � ḡ2 � L1 �

Σkin
2 � u � a � L1 ��� 2L1

Γkin
1 � 2L1 � a � � Γkin

1 � L1 � a �
Rkin

1 � L1 � a �
����
u � ḡ2 � L1 �

� (3.2)
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Figure 2: Continuum extrapolation of the static step scaling function

Their continuum limits

σm � u ��� lim
a � L1 � 0

Σm � u � a � L1 � σ kin
1 � 2 � u ��� lim

a � L1 � 0
Σkin

1 � 2 � u � a � L1 � (3.3)

are well defined. Since the static theory is O(a)-improved, σm � u � is obtained by a linear fit in� a � L1 � 2, and we choose to use only the two finest lattices, corresponding to L1 � a � 10 � 12 . The
kinetic step scaling functions σ kin

1 � 2 � u � are extracted by fitting the data of the three finer lattices
linearly in a � L. Both for Σkin

1 and for Σm we could have included one coarser lattice without a
significant change (apart from smaller errors) as illustrated in figs. 2,3. 3

Since we find well compatible results from the different actions after taking the continuum
limits, we choose a constrained fit in the final analysis. In that case, the error is computed by a
jackknife procedure, binning the data in such a way that the number of jackknife configurations is
the same for the different sets of data. We note that a very significant θ � θ � dependence is still left
in the kinetic step scaling functions (I.2.8), nevertheless the final physical results will turn out to
be independent of these kinematical variables as they should (apart from small 1 � m2 terms). In our
figures, we made the choice � θ � θ � ��� � 0 � 0 � 5 � .
4. Large volume

The quantities computed in “infinite” volume are the static and the kinetic energy (I.4.2), where
now the light quark mass is fixed to mstrange. These energies occur in eq. (I.4.1), through the terms�
Estat � Γstat

1 � L2 ��� and
�
ωkin � Êkin � Γkin

1 � L2 � ��� . The infinite and the finite volume part of the static
and the kinetic energy are of course computed at the same value of the lattice spacing (in order
to cancel the divergences, as we did for the step scaling function). Our approximation to infinite
volume is L∞ � 4L1 � 1 � 5 fm (again using r0 � 0 � 5fm), and we use two resolutions L∞ � a � 16 � 24,
corresponding to β � 6 � 0219 � 6 � 2885 respectively. We obtain a nice signal for Estat due to the
HYP1/2 actions [7]. The errors in the effective mass remain below a level of few MeV out to 2 fm

3Since the definition of Σm and Σkin
2 involves simulations on a lattice of time extent T � L � 2 � a, a space extent of

L1 � a � 6 is too small to obtain trustworthy numbers. For this reason in the plots of these step scaling functions, we do
not show the data coming from this lattice.
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Figure 3: Continuum extrapolation of the kinetic step scaling functions

time separation. Thus the significant excited state contamination can be removed with confidence
and Estat � Γstat

1 � L2 � � 612 � 2 � MeV and 597 � 2 � MeV are found at β � 6 � 0219 � 6 � 2885 respectively
for the action HYP2. From this we quote at present E stat � Γstat

1 � L2 � � 586 � 11 � MeV as a continuum
number.

However,
�
ωkin � Êkin � Γkin

1 � L2 � ��� is very small and the errors of the effective (x0-dependent)
Êkin grow rather rapidly with x0. Thus, although we will see that this error is not dominant in the
end,

�
ωkin � Êkin � Γkin

1 � L2 � ��� has a large relative error.

5. The RGI b quark mass

5.1 Static part

The value of the RGI quark mass in the static approximation, defined by eq. (I.5.4), is obtained
by a linear interpolation of (I.5.2), where we used mexperimental

B � 5404 MeV as appropriate for a
strange quark. This interpolation is illustrated in fig 4. We obtain (the conversion to physical units
is done with r0 � 0 � 5fm)

r0Mstat
b � �

17 � 18 � 25 � (HYP2)
17 � 15 � 25 � (HYP1)

Mstat
b � �

6771 � 99 � MeV (HYP2)
6757 � 99 � MeV (HYP1)

(5.1)

5.2 1 � m corrections

The next to leading order correction of the b quark mass can be separated in two parts, cor-
responding to m

� 1a �
B , computed entirely from the small volume, and m

� 1b �
B , given by eq. (I.5.3).

Following eq. (I.5.6) we have

M
� 1a �
b � � 1

S
σ kin

2 � ḡ2 � L1 � � Φ1 � L1 � Mstat
b � (5.2)

M
� 1b �
b � � 1

S

�
L2 � Êkin � Γkin

1 � L2 � � ωkin � � (5.3)
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Figure 4: Interpolation and solution of eq. (I.5.2)

and we find for the action HYP2

θ θ � r0M
� 1a �
b r0M

� 1b �
b

0 0 � 5 � 0 � 08 � 4 � � 0 � 14 � 11 �
0 � 5 1 � 0 � 08 � 4 � � 0 � 15 � 11 �
1 0 � 0 � 08 � 4 � � 0 � 15 � 11 �

while for HYP1 the numbers are compatible but have larger uncertainties. It is now clear that the
results are θ � θ � -independent. In physical units, we find the scale and scheme independent numbers

M
� 1a �
b � � 30 � 15 � MeV M

� 1b �
b � � 56 � 43 � MeV (5.4)

in the quenched approximation.

6. Conclusions

Our numerical results show that indeed the 1 � m corrections can be computed with a precision
which is – at present – better than the one of the leading (static) result: the absolute errors of leading
and next-to-leading terms are in a ratio of about two to one. This is a first demonstration of the
practicability of the strategy of [3] beyond the leading order. Still, as mentioned in the previous
section, the errors of correlation functions with the kinetic insertion grow rather rapidly in time and
when decreasing the lattice spacing. The former behavior is at present not understood.

The size of the 1 � m corrections M
� 1a �
b and M

� 1b �
b is small and confirms the validity of the naive

counting in terms of powers of Λ � mb. Further numerical confirmation of this is provided by the
close agreement of our result with the one - also in quenched QCD - of [4], r0Mb � 17 � 08 � 41 � where
the effective theory was not used. This also means that 1 � m2 terms can be neglected altogether.

On the other hand, our static result differs (statistically) significantly from the static one of [3],
r0Mb � 16 � 12 � 25 � � 15 � , where the second error is in common between that computation and the
present one. In [3] the matching was performed using an other observable, and at L � L0 � L1 � 2.
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By a comparison to our present NLO result, we see that this leads to a somewhat larger ( � 5%)
1 � m correction. This is not at all unexpected, cf. item 3 in section 6 of [1]. In fact, an explicit
computation of this correction would be another interesting confirmation of the applicability of the
effective theory.
Let us finally translate our numbers to the MS scheme. With r0 � 0 � 5fm and Λ

� 0 �
MS � 238MeV [6]

we find for the b quark mass at its own scale

mb � mstat
b 	 m

� 1 �
b (6.1)

mstat
b � mb � � 4 � 350 � 64 � GeV � m

� 1 �
b � mb ��� � 0 � 049 � 29 � GeV � (6.2)

Despite the employed quenched approximation, the total result, mb � mb � � 4 � 30 � 7 � GeV, is in
good agreement with the range quoted in the particle data book and not far from the precise value
of mb � mb ��� 4 � 19 � 5 � GeV derived in [8] from the e � e ��� b total cross section and high order
perturbation theory. Our result is also compatible with the early computation (quenched and static)
of [9] mb � mb � � 4 � 41 � 5 � � 10 � GeV, where the matching was done perturbatively at the NLO. This
last result was updated to 4.30(5)(5) GeV in [10] with the help of the NNLO result of [11].

It seems that on the one hand it is the right time to apply these methods both to quantities
where larger 1 � m corrections are expected, such as FB, and to the mass of the b quark in full QCD.
On the other hand, research should continue to improve the statistical errors in particular of the
1 � m corrections in large volume. A promising route is to follow [12, 13].

Acknowledgement. We thank NIC for allocating computer time on the APEmille computers at
DESY Zeuthen to this project and the APE group for its help.
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