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Preliminary results are presented in a step scaling determination of the coefficients in the relativis-

tic heavy quark action. By matching finite volume, heavy-heavy and heavy-light meson masses,

we attempt to determine the four parameters (m, ζ , cB andcE) in the on-shell-improved, heavy

quark action. In this report we carry out one step in this program by matching two physically

equivalent systems. The first is a fully relativistic calculation using a 243×48, 1/a = 5.4 GeV

lattice with both the heavy and light quarks treated as domain wall fermions. The second cal-

culation uses at 163×32, 1/a = 3.6 GeV lattice, a domain-wall light quark and a heavy quark

computed with the relativistic heavy quark action. The fourparameters in this heavy quark ef-

fective action are then varied to reproduce the mass spectrum from the first calculation. These

calculations are carried out in the quenched approximationfor a heavy quark mass approximately

that of the charmed quark.
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1. Introduction

Heavy quark physics plays an important role in determining the basic parameters of the Stan-
dard Model [1, 2] and lattice QCD provides a first principles method for determining these pa-
rameters. However, to treat a charm or bottom quark using presently accessible lattice spacings
requires the use of an effective theory, one which is not accurate forenergy scales on the order of
the charm or bottom mass but which will accurately describe the physics of charmed or bottom
states at the energy of scale of interest, theΛQCD scale of non-perturbative QCD. Here we will
study the relativistic heavy quark effective theory of the Fermilab [3] andTsukuba [4] groups.

This relativistic heavy quark action can be written down as:

S = ∑
x

ψ(x)[m0 + γ0D0 +ζ~γ ·~D− rtD
2
0− rs∑

i

Di
2

− ∑
i

i
2

σ0iF0i +∑
i, j

i
2

cBσi j Fi j +ξ{D0,Di}σ0,i ]ψ(x) (1.1)

where
Dµψ(x) =

1
2
[Uµ(x)ψ(x+ µ̂)−U†

µ(x− µ̂)ψ(x− µ̂)] (1.2)

D2
µψ(x) =

1
2
[Uµ(x)ψ(x+ µ̂)+U†

µ(x− µ̂)ψ(x− µ̂)−2ψ(x)] (1.3)

Fµ,νψ(x) =
1
8i ∑

s,s′=±1

ss′[Usµ(x)Us′ν(x+sµ̂)

×U−sµ(x+sµ̂ +s′ν̂)U−s′ν(x+s′ν̂)−h.c. ]ψ(x) (1.4)

As discussed in Ref. [3], this action can be used to compute amplitudes which involve heavy
quarks carrying spatial momenta ofO(p) which will be accurate to orderF(ma)(pa)2. Potentially
large errors of order(ma)n, wherem is the heavy quark mass, can be removed by a proper choice
of the sevenma-dependent parameters,m, ζ , rt , rs, cE, cB andξ . If the coefficient functionsF(ma)
are bounded, then these errors vanish uniformly in thea→ 0 limit.

As pointed out in Ref. [4], the equations of motion can be used to justify settingrt = 1 and
ξ = 0. With this choice all on-shell Greens functions will still take their continuum form with
errors of orderF(ma)(pa)2. As explained in Ref. [3], a final field transformation can be made to
justify setting the parameterrs = ζ . Such a transformation will not change particle masses but will
result in on-shell fermion (e.g. nucleon) propagators which do not show the standard continuum
form. (Note this field transformation is actually performed on the effective continuum action and
establishes a relation between the low-energy, on-shell Greens functions of the two theories only.)
In the work presented here we will make the Fermilab choice,rs = ζ and determine the remaining
four parameters,m, cE, cB and ζ using non-perturbative methods that involve only the particle
spectrum. While not discussed here, the effects of this choice forrs could be determined from the
spinor structure of the nucleon propagator and then removed.

2. Step-scaling strategy

We propose to determine these four coefficients in the RHQ action by matching the finite-
volume, heavy-heavy and heavy-light spectrum with that determined in an accurate, small-macal-
culation, a strategy similar to that employed for the static approximation [5]. By performing a
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series of such comparisons, see Fig. 1, we can move from an accurate,ma≪ 1 calculation in small
volume, to a final action at a coarser lattice spacing, practical for large-volume calculations.
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Figure 1: A schematic of the step scaling technique we use to determinethem, cB,cE andζ , appropriate for
charm quark physics, from non-perturbative,O(a)-improved, light quark calculations at 1/a = 5.4 GeV.

Figure 1 shows the steps that we have begun to carry out. Using the quenched approximation
for simplicity, we match physical quantities calculated on the two finest lattices, which have a fixed
physical volume of(0.9 f m)3. For the 1/a= 5.4 GeV lattice we use domain wall fermions (DWF),
involving the single parameter,m≈ 1.08 GeV, chosen to approximate the charm quark mass. We
then adjust the coefficients of the RHQ action on the 1/a = 3.6 lattice until the spectra of the two
calculations agree. Second, we expand the volume to(1.35f m)3, keeping all coefficients fixed,
and then match with a fourth calculation with 3/2 larger lattice spacing. Here, we demonstrate the
practical implementation of our approach through stage one: matching the DWF5.4 GeV (fine
lattice) spectrum calculated that on a 3.6 GeV (coarse lattice) using the RHQ action.

In the matching step we compare the pseudo-scalar(PS), vector(V), scalar(S), and pseudo-
vector(PV) meson masses for heavy-heavy(hh) states and PS and V masses for heavy-light(hl)
states. We also require the equality of the massesm1 and m2 in the hh-PS dispersion relation
E(p2)hh

PS = m2
1 + (m1/m2)p2. For both the heavy quark on the fine lattice and the light quark at

both lattice spacings we use the DWF action, see Ref. [6] for the method usedhere and further
references. In each case we used a fifth dimensional extent,Ls = 12 and a domain wall “height”,
M5 = 1.5, ensuring that there are no unphysical propagating states for the quark masses used.

As a starting point for our 1/a = 3.6 GeV calculation, we used the one-loop perturbative co-
efficients for the five-parameter Tsukuba action [7]. These were translated into the four parameters
of the Fermilab RHQ action by performing theO(a) tree-level field transformation:

ψT = [1+δ~γ~D]ψF , ψT = ψF [1−δ~γ
←
D], δ =

−rs−ζ
2(m0 +ζ )

. (2.1)

3. Simulation

We used the Wilson gauge action since its relation between coupling and lattice spacing has
been carefully studied [8]. However, as a final check, we examined thestatic quark potential on
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our two ensembles. We first determined the lattice spacing directly from the two standards scales,
r0 andrI , obtaining results distorted by our small-volumes. We also obtained the ratio of lattice
spacings directly from the following relation:

V1(n1) = V2(n2/λ )/λ +C (3.1)

whereλ (= a2/a1) is the lattice spacing ratio between two lattices. The potentialV2(r), from the
fine lattice, is fit to a standard phenomenological form and thenλ determined so that this fit, scaled
as in Eq. 3.1 matches that on the coarse lattice, giving the expected ratioa1/a2 = 1.51(2). Figure. 2
shows how accurately these scaled static quark potentials agreed.
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Figure 2: The squares are the static quark potential from theβ = 6.638 lattice scaled to match the lattice
spacing atβ = 6.351. The circles are theβ = 6.351 potential.

We employed a “smeared”, Coulomb gauge-fixed, heavy quark wavefunction source using
orthogonal hydrogen ground and first-excited wavefunctions. Table1 lists the 22 RHQ parameter
sets that we have run on the coarse lattices. The first few sets of data were chosen close to the 1-
loop coefficients described above and the latter ones adjusted as we further explored the parameter
space.

Table 1: The details of the parameters we have run for the work reported here.
Label m0 cB cE ζ

1 0.00 1.552 1.458 1.013
2 0.07 1.547 1.424 1.001
3 0.0426 1.550 1.438 1.007
4 0.0426 1.550 1.438 1.100
5 0.0426 1.550 1.438 0.900
6 0.0330 1.609 1.538 1.044
7 0.0230 1.609 1.438 1.044
8 0.0230 1.609 1.538 1.044
9 0.0426 1.609 1.438 1.044
10 0.0426 1.550 1.438 1.007
11 0.0 1.552 1.438 1.013

Label m0 cB cE ζ
12 0.0328 1.511 1.438 1.036
13 0.0230 1.511 1.438 1.036
14 0.0328 1.511 1.538 1.036
15 -0.01 1.700 1.574 1.022
16 0.00371 1.709 1.577 1.023
17 0.0138 1.715 1.579 1.025
18 0.02 1.719 1.580 1.026
19 0.03 1.725 1.582 1.027
20 0.08 1.707 1.576 1.023
21 0.09 1.713 1.578 1.025
22 0.1 1.719 1.580 1.026
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4. Analysis and result

We next use the above parameter sets to determine the dependence of the measured quantities
on the four RHQ action parameters we wish to determine. We attempt to work within aparameter
range where we can use the linear relation:

Yi
coarse= A+J ·Xi

RHQ (4.1)

HereA is ad-dimensional vector andJ and×4 matrix. The vectorXi
RHQ is formed of the four RHQ

parameters{(XRHQ)i
a}1≤a≤4 = {mi

0,c
i
B,ci

E,ζ i} while the d-dimensional vectorYi
coarse is formed

from the spectral quantities measured on the coarse lattice. Ford = 6{(Yi
coarse)a}1≤a≤6 = {1

4(MPS+

3MV)hh,i ,(MPS−MV)hh,i ,(MPV−MS)
hh,i ,(m1/m2)

hh,i , 1
4(MPS+3MV)hl,i ,(MPS−MV)hh,i}. The in-

dex i labels the parameter set and varies between 1 and 22.
Equation 4.1 can be solved directly forA andJ if we use five parameter sets. More parameter

sets can be used if we minimize a weighted sum of the deviations between the left- and right-hand
sides of Eq. 4.1. We can then use the resulting values forJ andA, to solve for the parametersXRHQ

that yield meson masses as close as possible to those on the fine lattice (denotedasYf ine with error
σ f ine) by minimizing the following quantity with respect toXRHQ:

χ2
f ine =

d

∑
n=1

|(J ·XRHQ+A−Yf ine)n|
2

σ2
f ine,n

. (4.2)

We divided our data into three categories to explore the sensitivity of the resulting coefficients
to our choice of masses being matched: A. heavy-heavy system only, including spin-orbit splitting;
B. heavy-heavy (no SO splitting) and heavy-light systems; and C. all of the above measurements.
The first five rows of Table 2 demonstrate the stability of our results for the least constrained
choice of set A. As we incrementally removed the parameter sets that contribute the most to the
chi-squared in Eq. 4.2, the matching RHQ parameters remain consistent. As Table 2 suggests,

Table 2: A check on the stability of the analysis using the example of data set A and results for B and C.
Note, the errors onm0 should be viewed as 20% of the≈ 0.3 renormalized mass.

data sets χ2/d.o. f . m0 cB cE ζ
A(all) 512/22 0.035(61) 1.725(10) 1.3(5) 1.036(17)
(drop 15) 123/21 0.034(60) 1.726(10) 1.3(5) 1.036(17)
(drop 4,15) 57/20 0.027(66) 1.71(9) 1.3(4) 1.039(18)
(drop 3, 4, 15) 41/19 0.026(67) 1.71(9) 1.3(4) 1.039(18)
(drop 2, 3, 4, 15) 29/18 0.026(65) 1.70(9) 1.3(4) 1.040(18)

B 128/21 0.03(21) 1.75(18) 1.3(17) 1.04(4)

C 42/19 0.011(61) 1.73(1) 1.2(4) 1.043(17)

we have very consistent results for different choices of parameter sets and meson masses to be
matched. The results from parameter set B, which excludes the spin-orbitsplitting, givescE and
m0 with enormous errors. On the other hand, the matching coefficients determined from sets A and
C look more promising.
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5. Outlook and Conclusion

It appears practical to determinem0, cB, cE andζ from finite-volume, non-perturbative match-
ing. More statistics and better parameter coverage should reduce the matching errors to a few
percent. Carrying out the second matching step in Fig. 1 will permit us to perform a RHQ, charm
physics calculation with 1/a = 2.4 GeV and a(2fm)3 volume. While we have reported quenched
results here, it should be emphasized that this approach can be extendedto full QCD without exces-
sive computational cost. Since the RHQ parameters being determined are short-distance quantities,
they depend on both the lattice volume and sea quark masses only throughO(a2) errors. Hence the
dynamical quark masses need not be physical but must only obeymsea≪ 1/a. Thus, we need only
require thatNf = 3 and thatmsea/ΛQCD are equal for each pair of systems being matched.
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