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The matching between Schrödinger Functional renormalization schemes and conventional per-

turbative schemes is usually done using an intermediate lattice scheme. We propose to do the

matching directly. This requires the perturbative evaluation of Schrödinger Functional correlation

functions in the continuum. We use dimensional regularization but due to the lack of translational

invariance in the Euclidean time direction, we employ a general technique introduced by Lüscher.

In this talk I describe this technique and its application tothe one-loop expansion of correlation

functions used in the definition of the renormalized quark mass in the Schrödinger Functional

scheme. The divergent parts are identified and the computation of finite parts is in progress.
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Dimensional regularization of Schrödinger Functional correlation functions

1. Introduction

The QCD Schrödinger Functional (SF) [1, 2] can be used to define finitevolume renormaliza-
tion schemes which are suitable for non-perturbative renormalization. Thismeans that the running
of renormalized parameters and operators can be traced non-perturbatively from low to high ener-
gies. Applications include the running coupling and quark mass, moments of structure functions,
the static light axial current and four-quark operators (see [3] and references therein for previous
applications). The perturbative, high energy matching with conventional perturbative schemes such
asMS, is usually established by using an intermediate lattice renormalization scheme.It is possi-
ble, however, to do this matching directly through dimensional regularization of the SF. This is the
aim of our work. Proceeding this way we expect advantages for the renormalization of four-quark
operators and useful checks of previous results.

Conventional dimensional regularization techniques rely on the form of propagators in mo-
mentum space. Due to Dirichlet boundary conditions in the Euclidean time direction the standard
techniques cannot be applied to the SF. Therefore, we will employ a method due to Lüscher [4], us-
ing the heat kernels representation of propagators. As a first exercise we study the renormalization
of the quark mass in the SF renormalized scheme [5].

2. SF renormalized quark mass

We consider QCD with two flavors of mass degenerate quarks. The startingpoint for the
definition of the SF renormalized mass is the PCAC relation:

∂µAa
µ(x) = 2mPa(x), (2.1)

whereAa
µ(x) andPa(x) are the isovector axial current and pseudoscalar density respectively. This

relation holds true, up to contact terms, when inserted in any correlation function. The axial current
is protected against renormalization by chiral symmetry so it stays finite. Thusif we define the
renormalized massmR = Zmm through the PCAC relation, its renormalization will be given once
an independent renormalization condition is imposed on the pseudoscalar density, i.e.Zm = Z−1

P

givenPa
R(x) = ZPPa(x). The renormalized pseudoscalar density is defined within the SF framework.

The SF geometry consists in a space-time manifold with Dirichlet boundary conditions in the
Euclidean time direction and periodic boundary conditions (up to a phase forfermionic fields1)
in the spatial directions. To prepare the ground for dimensional regularization we consider aD-
dimensional manifold with an arbitrary number 3+ d of L-periodic spatial directions. Our nota-
tional conventions for indices and vectors are the same as in [6]. External momenta have only
physical components and we take the boundary fields to be independent of the extra-dimensional
coordinates. We impose vanishing gauge fields at the Euclidean time boundaries so that the induced
background field vanishes.

To defineZP within the SF framework we consider bilinear source fields at the boundaries
x0 = 0 andx0 = T:

O
a ≡

∫

dD−1ŷ dD−1ẑ ζ (ŷ)γ5
1
2

τaζ (ẑ), O
′a ≡

∫

dD−1ŷ dD−1ẑ ζ
′
(ŷ)γ5

1
2

τaζ ′(ẑ), (2.2)

1This phase plays no rôle in the following discussion and will be omitted to ease the notation.
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Dimensional regularization of Schrödinger Functional correlation functions

whereζ , ζ , ζ ′ andζ
′
are the usual boundary quark fields [7] andτa are Pauli matrices acting in fla-

vor space. Boundary fields renormalize multiplicatively with a common renormalization constant
Zζ [6, 7]. We now introduce the following correlation functions:

fP(x0) = −1
3
〈Pa(x)Oa〉, f1 = −1

3
L−2(D−1)〈O ′a

O
a〉, (2.3)

where the powers ofL are such that the correlation functions are dimensionless. We write their
perturbative expansion on the renormalized couplinggR as:

fP(x0) =
∞

∑
n=0

f (n)
P (x0)g

2n
R , f1 =

∞

∑
n=0

f (n)
1 g2n

R . (2.4)

Now ZP is defined equating a ratio of renormalized correlation functions to its tree level value[5]:

fP(x0)R
√

( f1)R
≡

ZPZ2
ζ fP(x0)

√

Z4
ζ f1

= ZP
fP(x0)√

f1
=

f (0)
P (x0)
√

f (0)
1

, (2.5)

where correlations are computed in the chiral limit andx0 = T/2. To establish the matching be-
tween the SF and theMS renormalized mass we must consider the perturbative expansion:

Zm =
∞

∑
n=0

Z(n)
m g2n

R = 1+g2
R

(

f (1)
P (x0)

f (0)
P (x0)

− f (1)
1

2 f (0)
1

)

+O(g4
R). (2.6)

Here we have usedZm = Z−1
P . In the following section we will see how to computef (1)

P and f (1)
1

using dimensional regularization.

3. One-loop diagrams

It is not difficult to obtain the perturbative expansion of our correlation functions. At orderg2
R

we find the following diagrams:

×

f (1)a
P (x0)

0 x′0 x′′0 x0

×

f (1)a′

P (x0)

0 x′0 x′′0 x0

×

f (1)b
P (x0)

0 x′0,x
′′
0 x0

f (1)a
1

0 x′0 x′′0 T

f (1)a′

1

0 x′0 x′′0 T

f (1)b
1

0 x′0 x′′0 T

Arrows represent free quark propagators and curved lines represent free gluon propagators.
The pseudoscalar density insertion is marked with a cross and vertical linesare Euclidean time
boundaries. Self-energy and vertex diagrams are divergent. They can be compactly written like:

Σ( f ) ≡
∫ T

0
dx′0dx′′0 Tr{ f (x′0,x

′′
0)Σ(x′0,x

′′
0)},

V( f ) ≡
∫ T

0
dx′0 dx′′0 Tr{ f (x′0,x

′′
0)V(x0,x

′
0,x

′′
0)}. (3.1)

HereΣ(x′0,x
′′
0) andVP(x0,x′0,x

′′
0) are the amputated self-energy and vertex diagram respectively and

they contain a sum over momenta. Different self-energy diagrams,a anda′, are obtained changing
the external functionf (x′0,x

′′
0), which is a string of free propagators and gamma matrices.
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Dimensional regularization of Schrödinger Functional correlation functions

3.1 Dimensional regularization technique

To regularize the one-loop diagrams we employ a general dimensional regularization tech-
nique as introduced by Lüscher in [4]. We begin with a suitable representation for free quark and
gluon propagators similar to the one given in [6], except that here we work in a time-momentum
representation:

Ŝ(0)(x0,y0; p̂) = [−∂0γ0− ipk̂γk̂][P+ĜND(x0,y0; p̂)+P−ĜDN(x0,y0; p̂)]

D̂(0)
µ̂ ν̂(x0,y0; p̂) = δµ̂0δν̂0ĜNN(x0,y0; p̂)+δµ̂ k̂δν̂ k̂Ĝ

DD(x0,y0; p̂). (3.2)

HereP± = 1
2(1± γ0) are Dirac space projectors andGB0BT (x0,y0; p̂) are Green functions of the

extended Laplacian operator,4 = −∂ 2
0 + p̂2, with Dirichlet (D) or Neumann (N) conditions at

x0 = 0 andx0 = T. The advantage of this representation is that now we can express the Green
functions in terms of heat kernels:

ĜB0BT (x0,y0; p̂) =
∫ ∞

0
dt K̂B0BT

t (x0,y0; p̂), (3.3)

whereK̂B0BT
t (x0,y0; p̂) satisfy the heat equation:

(∂t +4)K̂B0BT
t (x0,y0; p̂) = 0. (3.4)

Contributions from different dimensions factorize, in particular we can take out a factor which
depends on extra, non-physical, components of the momentum:

K̂B0BT
t (x0,y0; p̂) = KB0BT

t (x0,y0;p)
D−1

∏
µ=4

e−t p2
µ . (3.5)

HereKB0BT
t (x0,y0, p̂) is the heat kernel of the Laplacian in 4 dimensions with the given b.c.

For illustration we will consider the vertex diagram. Factorizing the contributions from extra
components of the momentum it can be written in the form:

V( f ) =
∫ ∞

0
dt1 dt2 dt3 [r(t1 + t2 + t3)]

d I( f ; t1, t2, t3),

with: r(t) ≡ L−1
∞

∑
n=−∞

e−t p2(n), p(n) ≡ 2πn
L

.
(3.6)

It is at this point that we can take the number of extra dimensionsd to be a complex number
d =−2ε, and the diagram becomes a meromorphic function ofε. At ε = 0 the integration diverges
due to singularities in the integrandI( f ; t1, t2, t3) when all proper times go to zero simultaneously.
Since the functionr(t) goes as(4πt)−1/2 for small t, the prefactor[r(t1 + t2 + t3)]−2ε acts as a
regulator and cancels the divergences of the integrand whenRe(ε) is large enough. The diagram at
ε = 0 must be defined by analytical continuation as we will see in the following subsection.

3.2 Analytical continuation to ε = 0

We now look in some detail at the integrand:

I( f ; t1, t2, t3) = −CFL−3
∫ T

0
dx′0dx′′0 ∑

p
e−(t1+t2+t3)p2

Tr
{

γk̂

[

ΓA∂0KND
t1 (x′0,x0)∂0KDN

t2 (x0,x
′′
0)−

−p2ΓBKND
t1 (x′0,x0)K

ND
t2 (x0,x

′′
0)

]

KDD
t3 (x′0,x

′′
0)γk̂ f (x′0,x

′′
0)

}

+ · · · (3.7)
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Dimensional regularization of Schrödinger Functional correlation functions

HereCF = (N2−1)/2N with N the number of colors. Omitted terms have the same structure. We
have factorized the kernels for the 3 spatial directions and the one-dimensional kernels for the Eu-
clidean time direction:KB0BT

t (x0,y0). In the following we will be referring to these one-dimensional
kernels when talking about heat kernels. An explicit expression for them can be found in [6].ΓA

andΓB are some Dirac structures. To analytically continue toε = 0 we first must identify at which
values of proper times this expression is not integrable in the absence of regulator. Singularities
arise at small values of proper times. We study the asymptotic behavior of the integrand when one,
two, or all proper times go to zero and find that, as anticipated in the previous section, only in the
latter case we obtain a non integrable expression. It is convenient then to do the following change
of variables:t1 = ts1, t2 = ts2, t3 = ts3, with s1+s2+s3 = 1 and the vertex diagram can be written:

V( f ) =
∫ ∞

0
dt t2[r(t)]−2ε

∫ 1

0
ds1 ds2 ds3 δ (s1 +s2 +s3−1)I( f , ts1, ts2, ts3). (3.8)

To analytical continue toε = 0 we need to know the asymptotic expansion ofI( f , ts1, ts2, ts3)

including terms of ordert−3. Since exponentially suppressed terms do not enter in the asymptotic
expansion, we can consider reduced heat kernels (see [8]). Furthermore, for the vertex diagram it
is found that only the free space contribution, i.e. the one we would obtain if the boundaries were
not present, contributes to the divergence. We can then, from the verybeginning of the calculation,
split propagators and the corresponding kernels in its free space part(f) and a surface part (s) [9]:

S= Sf +Ss, Dµ̂ ν̂ = D f
µ̂ ν̂ +Ds

µ̂ ν̂ . (3.9)

Contributions to the diagram with any surface propagator are finite and canbe computed without
introducing the heat kernel representation. For the contribution coming from considering the free
part for all propagators we use heat kernels and find:

I f ( f ; ts1, ts2, ts3)
t→0∼ A( f ;s1,s2,s3)t

−3. (3.10)

A( f ;s1,s2,s3) is a functional of the external functionf , well behaved in the domain of integration.
The superscriptf reminds us that we are working only with free kernels. Since the leading term
goes liket−3, it is not necessary to go further in the asymptotic expansion. Inserting thisexpression
in Eq. (3.8) and using the asymptotic behavior of the regulator, we performthe integration over
proper times at the lower end of the domain of integration and obtain the divergence as a pole in
ε. To make the analytical continuation toε = 0 we add and subtract this divergence and obtain the
following representation of the diagram:

V f ( f )
ε→0
=

∫ 1

0
ds1 ds2 ds3 δ (1−s1−s2−s3)

{

A( f ;s1,s2,s3)

[

1
ε

+ ln(4π)

]

+

+
∫ ∞

0
dt t2

[

I ( f )( f , ts1, ts2, ts3)−θ(1− t)A( f ;s1,s2,s3)t
−3

]

}

+O(ε). (3.11)

The first term is the divergence and the remaining terms are finite contributions. Proceeding anal-
ogously with the self-energy diagram we obtain the following divergences:

f (1)
P (x0)|pole =

−CF

4π2ε
f (0)
P (x0)+

CF

4π2ε
f (0)
P (x0) = 0, (3.12)

f (1)
1 |pole =

−3CF

8π2ε
f (0)
1 . (3.13)
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Dimensional regularization of Schrödinger Functional correlation functions

The first term in the sum comes from the self-energy and the second fromthe vertex diagram.
Introducing these results in the expansion of Eq. (2.6) we find the correct divergence for the quark
mass:

Z(1)
m |pole =

3CF

16π2ε
. (3.14)

4. Conclusions and final remarks

We have seen how to apply dimensional regularization to SF correlation functions. In particu-
lar we have identified the divergences of the one-loop expansion of the correlation functions used
to define the SF renormalized quark mass. However it is the finite part what isrequired to establish
the matching with other perturbative schemes.

The computation of the finite part can be divided in different pieces. Firstof all, the free gluon
propagator has a particular expression for zero momentum. We must computethe zero momentum
contribution to our diagrams separately then. This has been obtained analytically using MAPLE.
On the other hand, for the computation of the divergence only reduced kernels were required,
in particular for the vertex diagram only the free part contributes. We cancompute the remaining
contribution working withSs andDs

µ̂ ν̂ , which have a simpler analytical expression. Here only a sum
over momenta and two integrations are required. Finally we have the finite contributions coming
from Eq. (3.11). Obviously the difficult part here comes from the subtraction of the divergence
from the integrand. There are five integrations and the sum over momenta to be done. All these
computations are work in progress.

Acknowledgements:I would like to thank S. Sint for numerous helpful discussions and com-
ments on the manuscript. This work is supported by the Ministerio de Ciencia y Tecnología (Spain)
through a FPI grant.

References

[1] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, Nucl. Phys. B384(1992) 168
[arXiv:hep-lat/9207009].

[2] S. Sint, Nucl. Phys. B421(1994) 135 [arXiv:hep-lat/9312079].

[3] M. Guagnelli, J. Heitger, C. Pena, S. Sint and A. Vladikas[ALPHA Collaboration],
arXiv:hep-lat/0505002.

[4] M. Lüscher, Annals Phys.142(1982) 359.

[5] K. Jansenet al., Phys. Lett. B372(1996) 275 [arXiv:hep-lat/9512009].

[6] S. Sint, Nucl. Phys. B451(1995) 416 [arXiv:hep-lat/9504005].

[7] M. Lüscher, S. Sint, R. Sommer and P. Weisz, Nucl. Phys. B478(1996) 365 [arXiv:hep-lat/9605038].

[8] S. Sint, doctoral thesis, Universität Hamburg (1994).

[9] K. Symanzik, Nucl. Phys. B190(1981) 1.

234 / 6


