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Dimensional regularization of Schrdodinger Functional egation functions

1. Introduction

The QCD Schradinger Functional (SE) [1, 2] can be used to define fiolitene renormaliza-
tion schemes which are suitable for non-perturbative renormalization nidass that the running
of renormalized parameters and operators can be traced non-pgvelyblaom low to high ener-
gies. Applications include the running coupling and quark mass, momentsiofuse functions,
the static light axial current and four-quark operators (e [3] afetences therein for previous
applications). The perturbative, high energy matching with conventi@ralfpative schemes such
asMS, is usually established by using an intermediate lattice renormalization schiésossi-
ble, however, to do this matching directly through dimensional regularizatitre@F. This is the
aim of our work. Proceeding this way we expect advantages for tloenmatization of four-quark
operators and useful checks of previous results.

Conventional dimensional regularization techniques rely on the formagamators in mo-
mentum space. Due to Dirichlet boundary conditions in the Euclidean time dimebtostandard
techniques cannot be applied to the SF. Therefore, we will employ a metiead diischer{[4], us-
ing the heat kernels representation of propagators. As a first exeveistudy the renormalization
of the quark mass in the SF renormalized scheine [5].

2. SF renormalized quark mass

We consider QCD with two flavors of mass degenerate quarks. The stadingfor the
definition of the SF renormalized mass is the PCAC relation:

A (X) = 2mP(x), (2.1)

whereAf (x) andP?(x) are the isovector axial current and pseudoscalar density respeclies
relation holds true, up to contact terms, when inserted in any correlatictidan The axial current
is protected against renormalization by chiral symmetry so it stays finite. iTkesdefine the
renormalized massr = Zym through the PCAC relation, its renormalization will be given once
an independent renormalization condition is imposed on the pseudoscasiydiee. Z,, = Z,;l
givenP3(x) = ZpP?(x). The renormalized pseudoscalar density is defined within the SF framework
The SF geometry consists in a space-time manifold with Dirichlet boundanytmorgiin the
Euclidean time direction and periodic boundary conditions (up to a phaderfaionic fields)
in the spatial directions. To prepare the ground for dimensional regal@izwe consider ®-
dimensional manifold with an arbitrary numbe#-3l of L-periodic spatial directions. Our nota-
tional conventions for indices and vectors are the same 43 in [6]. Ekraoraenta have only
physical components and we take the boundary fields to be indeperidbataxtra-dimensional
coordinates. We impose vanishing gauge fields at the Euclidean time bms&tathat the induced
background field vanishes.
To defineZp within the SF framework we consider bilinear source fields at the boursdarie
Xo=0andxg=T:

n Dolas,mn 1 A 1m aDdas A L ,\
o*= [P 2l @psr0@, 0= [P RTGk, ), @2)

1This phase plays no réle in the following discussion and will be omitted to eagetation.
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wherel, Z, ' and?l are the usual boundary quark fieldls [7] aricare Pauli matrices acting in fla-
vor space. Boundary fields renormalize multiplicatively with a common renorataliz constant
Z; [B., [4]. We now introduce the following correlation functions:

folxo) =~ (P90, fi= L 20V (0R0%, 23)
where the powers df are such that the correlation functions are dimensionless. We write their

perturbative expansion on the renormalized coupljn@s:

%f X0)0&', f1= ;fl 9R- (2.4)

Now Zp is defined equating a ratio of renormalized correlation functions to its trekviahe[5]:
2
fe(xo)r _ ZPZ¢ fr(Xo ) fP(Xo) £ (x0)

VR g VR e

where correlations are computed in the chiral limit apa= T /2. To establish the matching be-
tween the SF and tHdS renormalized mass we must consider the perturbative expansion:

(2.5)

<1>( ¢

f

Here we have usef,, = Z,;l. In the following section we will see how to computé” and fl(l)
using dimensional regularization.

3. One-loop diagrams

It is not difficult to obtain the perturbative expansion of our correlatiomcfions. At ordeg3
we find the following diagrams:

!/

0 X, X X 0% X)X 0 % XX 00Xy XT 00X, 4T 0% x4 T
Arrows represent free quark propagators and curved linesseprdéree gluon propagators.

The pseudoscalar density insertion is marked with a cross and verticakliedsuclidean time
boundaries. Self-energy and vertex diagrams are divergent. Hmeyeccompactly written like:

T
£(1) = [ s TH{T (60,3206, 56)}
V(1) = [ T OV (0. 56, ) 1)

HereZX(xg, xg) andVe(Xo, X, X3 ) are the amputated self-energy and vertex diagram respectively and
they contain a sum over momenta. Different self-energy diagramsgda’, are obtained changing
the external functiorf (x, x3), which is a string of free propagators and gamma matrices.

234/3



Dimensional regularization of Schrdodinger Functional egation functions

3.1 Dimensional regularization technique

To regularize the one-loop diagrams we employ a general dimensiondaniegtion tech-
nique as introduced by Liischer if} [4]. We begin with a suitable represamfar free quark and
gluon propagators similar to the one given[ih [6], except that here wk imca time-momentum
representation:

S9(x0,Y0;B) = [~ 006 — iPr}k [P+ G"P (%0, Y03 B) + P-G™ (%0, Y0; )]
DY) (%o, Yo: ) = 080G (0, Yo: B) + 835, G°° (¥o, Yo: ). (3.2)
Here Py = z(li Yo) are Dirac space projectors a@foBT (xo,yo; p) are Green functions of the
extended Laplacian operatafy = —02 + p?, with Dirichlet (D) or Neumann (N) conditions at

Xo = 0 andxg = T. The advantage of this representation is that now we can express tha Gre
functions in terms of heat kernels:

G (0,y0iP) = [ LR (xa,y0:P), (3.3)
whereKEPT (xo,y0: P) satisfy the heat equation:
(0 + 2)REPT (x0,y0; P) = O. (3.4)

Contributions from different dimensions factorize, in particular we cae @kt a factor which
depends on extra, non-physical, components of the momentum:

RE2T (%0, Y0; B) = KE2T (X0, Yoi ) |'|e (3.5)

HereKtBoBT (X0, Y0, P) is the heat kernel of the Laplacian in 4 dimensions with the given b.c.
For illustration we will consider the vertex diagram. Factorizing the contribatfoom extra
components of the momentum it can be written in the form:

:/0 dty dtp dtg [r(ty +ta+t3)]9 1 (13,10, t3),
(3.6)

with: =Ly e, p(n) =

N=—o0

T
It is at this point that we can take the number of extra dimensibts be a complex number
d = —2¢, and the diagram becomes a meromorphic function @t € = 0 the integration diverges
due to singularities in the integrahdf;t;,t»,t3) when all proper times go to zero simultaneously.
Since the functiorr (t) goes ag4mnt) /2 for small t, the prefactofr (t; +t, +t3)] "% acts as a
regulator and cancels the divergences of the integrand Rh@) is large enough. The diagram at
€ = 0 must be defined by analytical continuation as we will see in the followingestios.

3.2 Analytical continuationto € =0

We now look in some detail at the integrand:

;
|(f;ty,to,t3) = —Cr L*:“/0 d>{;d>{)’2e*(t1“2“3)p2Tr{w( [MA30KEP (X0, X0) FoKEN (X0, X5) —
- P

P2 KN (X, X0 K2 %0, X6) | KEP 0, X6) v f 06, 36) 4+ (3.7)
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HereCr = (N2 —1)/2N with N the number of colors. Omitted terms have the same structure. We
have factorized the kernels for the 3 spatial directions and the one-donahkernels for the Eu-
clidean time directionKtBoBT (X0, Y0)- Inthe following we will be referring to these one-dimensional
kernels when talking about heat kernels. An explicit expression fon tten be found in[[6]I™*
andl® are some Dirac structures. To analytically continue 0 we first must identify at which
values of proper times this expression is not integrable in the absencguiditar. Singularities
arise at small values of proper times. We study the asymptotic behavior otélgeand when one,
two, or all proper times go to zero and find that, as anticipated in the preveatisrs, only in the
latter case we obtain a non integrable expression. It is convenient therthe dbllowing change

of variablest; =ts, th =tsp, t3 =tsg, with 51 + S, + 53 = 1 and the vertex diagram can be written:

V(f) = /Om dt t2[r(t)] % /(;ldsl de dss 6(s1+2+S3— 1)1 (f,ts1,t,t53). (3.8)

To analytical continue t&@ = 0 we need to know the asymptotic expansionl Of,ts;,tsy,ts3)
including terms of ordetr 3. Since exponentially suppressed terms do not enter in the asymptotic
expansion, we can consider reduced heat kernels [[see [8]).eFuxte, for the vertex diagram it

is found that only the free space contribution, i.e. the one we would obtaia Bdabndaries were

not present, contributes to the divergence. We can then, from théggnyning of the calculation,
split propagators and the corresponding kernels in its free spacg)mart! a surface part (s)][9]:

f
S=s'+, Do =Dy +Dio- (3.9)

Contributions to the diagram with any surface propagator are finite andecanmputed without
introducing the heat kernel representation. For the contribution coming ¢onsidering the free
part for all propagators we use heat kernels and find:

I (F;tsp,tsp,tss) ROA(F 1, 52,80t 2, (3.10)

A(f;s1,5,53) is a functional of the external functioh well behaved in the domain of integration.
The superscripf reminds us that we are working only with free kernels. Since the leading term
goes liket—3, it is not necessary to go further in the asymptotic expansion. Insertingxpisssion

in Eq. (3.8) and using the asymptotic behavior of the regulator, we perfeenmtegration over
proper times at the lower end of the domain of integration and obtain the divegcas a pole in

€. To make the analytical continuation4c= 0 we add and subtract this divergence and obtain the
following representation of the diagram:

Vi) ezo/oldsldsz d30(1-81 -9 —Ss) {A(f;SLSQaSS) E+In(4ﬂ)} +

+/O°° dt t2 [I (D(f,tsy, tsp, ts3) — 9(1—t)A(f;sl,sQ,se)t*3} } +0(¢). (3.11)

The first term is the divergence and the remaining terms are finite contrisuttvnceeding anal-
ogously with the self-energy diagram we obtain the following divergences

—Cr (0 C 0
fo” (%) lpoe = 75 (%0) + 75 (¥0) = O, (312)
—-3C
1:1(l> ‘Pole = Fzg fl(O)' (3-13)
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The first term in the sum comes from the self-energy and the secondtfremertex diagram.
Introducing these results in the expansion of qg] (2.6) we find the ¢alinesrgence for the quark

mass: 3C
F

16m2e’

Zr(nl) Ipole = (3.14)

4. Conclusions and final remarks

We have seen how to apply dimensional regularization to SF correlatiotidoscin particu-
lar we have identified the divergences of the one-loop expansion obthelation functions used
to define the SF renormalized quark mass. However it is the finite part wiegfuged to establish
the matching with other perturbative schemes.

The computation of the finite part can be divided in different pieces. &, the free gluon
propagator has a particular expression for zero momentum. We must caimpaeyo momentum
contribution to our diagrams separately then. This has been obtained aalblyiging MAPLE.

On the other hand, for the computation of the divergence only reduceetlkewere required,

in particular for the vertex diagram only the free part contributes. Wecoampute the remaining
contribution working withS® andeN, which have a simpler analytical expression. Here only a sum
over momenta and two integrations are required. Finally we have the finitétzditins coming
from Eq. (3.I]1). Obviously the difficult part here comes from the salita of the divergence
from the integrand. There are five integrations and the sum over momengadkonie. All these
computations are work in progress.
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