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Using orbifold techniques I construct the Schrödinger functional (SF) for a doublet of Wilson
quarks with chirally rotated boundary conditions. This allows to perform checks of universal-
ity: for instance, the renormalized SF coupling constant, defined with either boundary conditions,
must have a unique continuum limit. Similarly, SF correlation functions in twisted mass QCD
and standard QCD can be defined such that they share a common continuum limit. An additional
benefit of the new set-up consists in the observation that all the bulk O(a) counterterms to the
action and composite operators become irrelevant in the chiral limit. This implies that (ratios of)
SF renormalization constants can be automatically O(a) improved, up to the effect of unavoid-
able boundary counterterms. As a first application we calculate the running coupling for Nf = 2
flavours in the SF-scheme to one-loop order of perturbation theory. Universality of the contin-
uum limit is confirmed and the irrelevance of the Sheikholeslami-Wohlert term in the action is
demonstrated explicitly.
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1. Introduction

The Schrödinger functional (SF) has become a general tool to address non-perturbative renor-
malization problems in QCD1. Renormalization schemes based on the SF are gauge invariant, quark
mass independent (through renormalization in the chiral limit) and suitable for evaluation by both
Monte Carlo and perturbative methods. Moreover, the finite space-time volume is used to set the
renormalization scale, so that recursive finite size techniques become applicable.

Why should one be interested in changing the boundary conditions for the quark and anti-
quark fields? The first motivation comes from twisted mass QCD: as discussed in [4], correlation
functions calculated in renormalized twisted mass QCD are, up to cutoff effects, related to renor-
malized correlation functions in standard QCD by a non-singlet chiral rotation. For this statement
to hold true with SF correlation functions, the SF boundary conditions must be chirally rotated, too.
Formulating the SF with the same boundary conditions for both twisted mass QCD and standard
QCD (as was done in [5]) implies that the renormalised SF correlation functions are different even
in the continuum limit. Second, it can be shown that, in a finite volume with (some variant of)
periodic boundary conditions, O(a) improvement of massless Wilson quarks is automatic (cp. [6]).
While the argument does not go through in the presence of standard SF boundary conditions, it can
be resurrected in the chirally rotated set-up.

2. Chiral rotation and SF boundary conditions

Consider isospin doublets χ ′ and χ ′ of quark and anti-quark fields satisfying homogeneous SF
boundary conditions [7] (P± = 1

2(1± γ0),

P+χ ′(x)|x0=0 = 0, P−χ ′(x)|x0=T = 0,

χ ′(x)P−|x0=0 = 0, χ ′(x)P+|x0=T = 0. (2.1)

When performing a chiral field rotation,

χ ′ = exp(iαγ5τ3/2)χ , χ ′ = χ exp(iαγ5τ3/2), (2.2)

the rotated fields satisfy the chirally rotated boundary conditions

P+(α)χ(x)|x0=0 = 0, P−(α)χ(x)|x0=T = 0,

χ(x)γ0P−(α)|x0=0 = 0, χ(x)γ0P+(α)|x0=T = 0, (2.3)

with the projectors

P±(α) =
1
2
[

1± γ0 exp(iαγ5τ3)
]

. (2.4)

For α = 0 the standard projectors P± = P±(0) are recovered. The special case of α = π/2 will be
of particular interest in the following,

P±(π/2) ≡ Q± =
1
2
(1± iγ0γ5τ3), (2.5)

as the orbifold method cannot be applied for arbitrary values of α .
1see [1, 2] for an overview and [3] for a recent application and further references.
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3. Orbifold construction

In the context of lattice QCD orbifold techniques have been applied by Taniguchi [8] in order
to implement SF boundary conditions for Ginsparg-Wilson quarks. Here I consider a single Wilson
quark flavour with lattice action

S f [ψ , ψ̄ ,U ] = a4 ∑
−T<x0≤T

∑
x

ψ̄(x)(DW +m0)ψ(x). (3.1)

The fermionic fields are taken to be 2T -anti-periodic in the Euclidean time direction,

ψ(x0 +2T,x) = −ψ(x), ψ(x0 +2T,x) = −ψ(x), (3.2)

and an orbifold reflection is introduced about the point x0 = 0,

R : ψ(x) → iγ0γ5ψ(−x0,x), ψ(x) → ψ(−x0,x)iγ0γ5. (3.3)

Following [8] the gauge field can be treated as an external field. It is first extended to the doubled
time interval [−T,T ], through

Uk(−x0,x) = Uk(x0,x), U0(−x0 −a,x)† = U0(x), (3.4)

and then 2T -periodically continued to all Euclidean times.
The fermionic fields may now be decomposed in even and odd components with respect to the

reflection symmetry R, viz.
Rψ± = ±ψ±, Rψ± = ±ψ±. (3.5)

Even and odd fields then satisfy Dirichlet conditions at x0 = 0,

(1∓ iγ0γ5)ψ±(0,x) = 0, ψ±(0,x)(1∓ iγ0γ5) = 0. (3.6)

Due to the 2T -anti-periodicity the complementary components then satisfy Dirichlet conditions at
x0 = T :

(1± iγ0γ5)ψ±(T,x) = 0, ψ±(T,x)(1± iγ0γ5) = 0. (3.7)

For the orbifold projection to work, a consistency condition must be satisfied,

S f [ψ ,ψ ,U ] = S f [ψ+ +ψ−,ψ+ +ψ−,U ] = S f [ψ+,ψ+,U ]+S f [ψ−,ψ−,U ]. (3.8)

This condition is rather strong and is the reason why the construction is restricted to the choice
α = π/2. As a consequence, the functional integral over the fermion fields factorises. Interpreting
R-even and R-odd fields as flavour components of a doublet field,

χ =
√

2

(

ψ−
ψ+

)

, χ =
√

2
(

ψ− , ψ+

)

, (3.9)

the functional integral over the quark fields takes the form
∫

∏
−T<x0≤T

dψ(x)dψ(x)e−S f [ψ ,ψ,U ] ∝
∫

∏
0≤x0≤T

dχ(x)dχ(x)e−
1
2 S f [χ ,χ ,U ]. (3.10)
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The fields in the orbifolded theory satisfy the boundary conditions

Q+χ(x)|x0=0 = 0, Q−χ(x)|x0=T = 0,

χ̄(x)Q+|x0=0 = 0, χ̄(x)Q−|x0=T = 0, (3.11)

which are a special case of Eqs. (2.3). Furthermore, in Eq. (3.10) we have used the fact that the
independent field variables χ and χ may be taken to be the fields at Euclidean times 0 < x0 < T
and the non-Dirichlet components at x0 = 0,T . Finally, a complete reduction to the interval [0,T ]

is obtained by re-writing the lattice action

S f [χ ,χ ,U ] = 2a4 ∑
0≤x0≤T

∑
x

χ(x)Dχ(x). (3.12)

Here D is essentially the Wilson-Dirac operator including the standard bare mass term, except for
some modifications near the time boundaries which are induced by the orbifold reflection. The
factor of 2 originates from the fact that the contributions from negative and positive times are
equal, and has been anticipated in Eq. (3.9). The explicit form of D and the identification of the
dynamical field space are the main results of the orbifold construction which would have been
difficult to obtain in other ways.

4. Boundary counterterms

Using the lattice symmetries of the chirally rotated SF the possible boundary counterterms of
dimension 3 can be identified:

K1 = χγ5τ3χ , K± = χQ±χ . (4.1)

It is easy to see that K1 corresponds to the logarithmically divergent boundary counterterm in the
standard SF [9]. It leads to a multiplicative renormalization of the quark and anti-quark boundary
fields. In order to understand the rôle of K± it is instructive to rotate back to the standard SF. In
terms of the primed fields one then obtains

K± →−χ ′iγ5τ3P±χ ′. (4.2)

We note that K+ (K−) contains only Dirichlet components at x0 = 0 (x0 = T ). This means that it
will never contribute to the SF correlation functions used in practice. We are thus left with a single
counterterm K− at x0 = 0 (K+ at x0 = T ), which is composed of non-Dirichlet components only. As
it violates parity and flavour symmetries it is a finite counterterm which can be fixed by requiring
parity restoration. The extension of this analysis to dimension 4 boundary counterterms will be
discussed elsewhere [10].

5. O(a) improvement and SF boundary conditions

Consider first massless lattice QCD on a hyper-torus with some variant of periodic bound-
ary conditions for all fields. The cutoff dependence of renormalized correlation functions is then
described by Symanzik’s effective continuum theory (see [11] for notation and references),

Seff = S0 +aS1 +O(a2),

〈O〉 = 〈O〉cont +a〈S1O〉cont +a〈δO〉cont +O(a2). (5.1)
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Here, S1 and δO are O(a) counterterms for the action and for O. Chiral symmetry of the contin-
uum action S0 implies that all insertions of O(a) counterterms vanish. To see this more explicitly
consider a γ5 field transformation:

χ → γ5χ , χ →−χγ5. (5.2)

The massless continuum action S0 is invariant while S1 changes its sign. Assuming that O is even
under a γ5 transformation, one can also show that δO has to be odd. It then follows that

〈OS1〉cont = −〈OS1〉cont, 〈δO〉cont = −〈δO〉cont, (5.3)

implying that indeed both counterterm insertions vanish. One may wonder whether the O(a) am-
biguity of the chiral limit might affect this conclusion. This is not the case, as the ambiguity is
proportional to

∫

d4x〈Oχ(x)χ(x)〉cont = 0, (5.4)

which vanishes again due to chiral symmetry. It follows that O(a) improvement of massless Wilson
quarks in finite volume is automatically satisfied (cp. [6]).

The situation changes in the presence of SF boundary conditions. The γ5 transformation is then
no longer a symmetry of the effective continuum theory, as the transformed fields satisfy boundary
conditions with the complementary projectors. Indexing correlation functions with the projectors
of the boundary condition for χ at x0, one finds for γ5-even observables O,

〈O〉cont
(P±) = 〈O〉cont

(P∓), 〈OS1〉cont
(P±) = −〈OS1〉cont

(P∓) 6= 0, (5.5)

i.e. the insertion of S1 does not vanish. This should not come as a surprise, as otherwise the
determination of O(a) improvement coefficients such as csw or cA in ref. [12] would have been
impossible.

The question then arises whether automatic O(a) improvement can be achieved with the chi-
rally rotated boundary conditions2 . This is indeed the case: if one augments the γ5 transformation
by a flavour exchange, i.e.

χ → γ5τ1χ , χ →−χγ5τ1, (5.6)

the chirally rotated SF boundary conditions remain unchanged, due to γ5τ1Q± = Q±γ5τ1. There-
fore, for γ5τ1-even observables the previous argument holds. Note, however, that this discussion
does not account for the O(a) counterterms at the time boundaries. Some of them share sym-
metries with the continuum action S0 and their insertion therefore never cancels. However, O(a)
improvement may then still be achieved by tuning just a few O(a) boundary counterterms.

The SF coupling [14] is an example of a γ5-even observable. In perturbation theory one finds

ḡ2(L) = g2
MS(µ)+ k1(µL)g4

MS(µ)+O(g6). (5.7)

Setting µ = L−1 the fermionic contribution to k1 = k1,0 +Nfk1,1 has been computed in [15],

k1,1 = −0.039863(2)/(4π), (5.8)

2For a different attempt see [13].
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and is obtained as the leading term in the asymptotic behaviour of a series of lattice approximants,

f (L/a) ∼ r0 +(a/L) [r1 + s1 ln(a/L)]+O(a2). (5.9)

In the standard SF one finds r0 = k1,1 and s1 ∝ c(0)
sw −1. Using instead the chirally rotated SF, k1,1

is indeed reproduced, while s1 now vanishes independently of c(0)
sw , as expected.
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