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1. Introduction

Despite the fact that logarithmic divergent renormalization constants like those for quark bi-
linears could be in principle safely computed in Lattice Perturbation Theory (LPT), one usually
tries to compute them non-perturbatively, relying on some intermediate scheme. Popular choices
areRI’-MOM [1] andSF [2]. Drawbacks of traditional perturbative computations are well known.
LPT is hard and as a result computations of renormalization constants are usually at one loop, with
second order computations just now making their entrance1. Due to the bad convergence properties
of LPT, large use is made of so-called Boosted Perturbation Theory (BPT), often in the Tadpole-
Improved (TI) variant. By making use of the Numerical Stochastic Perturbation Theory (NSPT)
method2, we are in a position to perform quite high orders computations: this means three (and
even four) loops for quark bilinears. By making use of BPT, weare in a position to assess con-
vergence properties and truncation errors of the series andto make contact with non perturbative
results, where available3. This is relevant, since both perturbative and non perturbative compu-
tations rely on the same assumptions, which strictly speaking are only proved in the perturbative
framework.

2. Computational setup

We performed our computations for Wilson gauge action and (unimproved, at the moment)
Wilson fermion action (r = 1). The quenched computations have been performed on lattice sizes
of both 324 and 164. Unquenched computations are at the moment4 for n f = 2,3 on 324. The
bigger lattice size fits well on ourAPEmille crate, while standard PC’s are enough for the smaller
size. In the following we will focus on then f = 2 results. Configurations have been stored in order
to perform many other computations.

We work in theRI’-MOM scheme [1]. Quark bilinears operators are computed between(off
shell) quark states of momentump and then amputated to getΓ-functions

〈p|ψΓψ |p〉 = G(p) → Γ(p) = S−1(p)G(p)S−1(p). (2.1)

By making use of a convenient projectorPO one then projects on the tree level structure

O(p) = Tr
(

P̂OΓ(p)
)

(2.2)

to obtain the operators in terms of which the renormalization conditions are given

ZO Z−1
q O(p)

∣

∣

∣

p2=µ2
= 1. (2.3)

Zq is the quark field renormalization constants defined via

Zq = −i
1
12

Tr(6 pS−1)

p2

∣

∣

∣

p2=µ2
. (2.4)

1See for example [3] at this conference.
2The method is reviewed in [4] and new technical details were also presented at this conference [5].
3This is the case for the quantities at hand: see [6] at this conference.
4n f = 4 computations are also on their way.
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Renormalization conditions are given in the zero quark masslimit in order to get a mass indepen-
dent scheme. We note with this respect that we are in a position to stay at zero mass by plugging
in the Dirac operator the convenient (critical mass) counterterms. These are analytically known at
one and two loops [7], while third loop has been computed in [4]. Going to four loop, we obtained
as a byproduct the corresponding new order for the critical mass5.

The gauge is fixed to Landau, which determines the one loop quark field anomalous dimension
to vanish.

One should keep in mind that theRI’-MOM scheme is defined in infinite volume, while we are
of course forced to finite volume approximations: as we will see, care is to be taken of this point.

In a traditional perturbative computation fixing the divergences (i.e. the log’s) is theeasy
part of the job, while obtaining finite parts is usually much harder. In NSPT it is just the other
way around. We actually take the anomalous dimensionsγ ’s for granted. InRI’-MOM they are
known to three loop order [8]: notice that is the reason why westop at third order. Only for RG-
invariant quantities (like the ratioZp/Zs on which we will focus in the following) we have almost
no conceptually severe limitations.

In the end, at a given loopL this is what one expects for the coefficient of a renormalization
constant:

zL = cL +
L

∑
i

di(γ) log(p̂)i + F(p̂) ( p̂ = pa) . (2.5)

The first (finite) term is the one we are interested in (in the continuum limit). log’s coefficients are
known function of anomalous dimensions while the remainderis a scalar function of hypercubic
invariants. The way to extract the continuum limit fromhypercubic-symmetric Taylor expansions
is explained in [5], which also contains a practical example, namely for the quark field renormal-
ization constant.

It is useful to see how our master formula Eq. (2.3) reads in a specific case,i.e. for the scalar
current ( first order6)

(

1− z(1)
q

β
+ . . .

)(

1− z(1)
s − γ(1)

s log(p̂2)

β
+ . . .

)(

1− o(1)
s

β
+ . . .

)

= 1 (2.6)

which determines
z(1)

s = z(1)
q −

(

o(1)
s − γ(1)

s log(p̂2)
)

(2.7)

Notice thato(1)
s is what is actually coming from measurements, whilez(1)

q comes from an indepen-
dent computation (there is no log because we are in Landau gauge). Higher orders simply requires
some more algebra in order to solve for the unknown quantities (modulo some remarks we will
make later).

3. Zp/Zs to four loops

Theperfect quantity to compute is the ratioZp/Zs. Quark field renormalization constants drops
5A quite surprising result is that resumming the critical mass at four loop in a convenient BPT scheme one obtains

a result which is not so far from non perturbative determinations.
6We slightly change notation with respect to Eq. (2.3): now the order is understood as the superscript, while sub-

script denotes the observable.

237 / 3



P
o
S
(
L
A
T
2
0
0
5
)
2
3
7

Wilson fermions quark bilinears to three loops Francesco Di Renzo

0.15 0.2 0.25 0.3
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Z
p
/Z

s

0.15 0.2 0.25 0.3
1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

Z
s
/Z

p

Figure 1: The resummation ofZp/Zs and ofZs/Zp (n f = 2) at β = 5.8. On thex-axis the values of the
different couplingsx0,x1,x2,x3 (see text). Color code fory-axis as follows: blue is one loop result, green
two loops, red three loops and pale blue four loops.

out in the ratio. There is no anomalous dimension around and so there is no conceptual limitation
to our computations (apart from practical ones, at moment mainly dictated by computer memory
limitations). As an extrabonus, in our perturbative approachZp/Zs andZs/Zp come fromdifferent
signals, so that one has the handle of verifying that the series are actually inverse of each other.

Forn f = 2 we obtain

Zp/Zs = 1−0.487(2)β−1−1.46(2)β−2−5.36(7)β−3 + . . .

Zs/Zp = 1+0.487(2)β−1 +1.70(2)β−2 +6.9(1)β−3 + . . . (3.1)

One can verify that series are actually inverse of each otherto a very good precision and we
point out that finite size effects have been proved to be well under control by comparing results on
different lattice sizes. These results come from the (quitehuge) collection of three loops configu-
rations that we stored. We actually pushed the computation even to four loops, even though with
less statistics. At four loop we only quote the resummed result. For this ratio the computation is
anyway safe. For quantities involving anomalous dimensions things are more cumbersome: one
has also to fit an unknownγ , which comes from log’s. Next step is now to resum the series.We
now make use of BPT and resum (forap = 1) using different expansion parameters according to
the definitions

x0 ≡ β−1 x1 ≡
β−1
√

P
x2 ≡−1

2
log(P) x3 ≡

β−1

P
(3.2)

whereP is the plaquette7. We resum atβ = 5.8 in order to make contact with the results of [6].
Resummation is plotted in Figure 1: different colors are fordifferent orders of resummation. We

7While x2 andx3 are widely used,x1 was defined just in order to better point out the general picture that emerges
from the choice of different couplings: see later.

237 / 4



P
o
S
(
L
A
T
2
0
0
5
)
2
3
7

Wilson fermions quark bilinears to three loops Francesco Di Renzo

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(pa)2

Z
s(1

)

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

(pa)2

Z
s(1

)

Figure 2: Computation of one loop renormalization constant for the scalar current. Upper points are the
unsubtractedo(1)

s , while lower (ticker symbols) stand for the subtractedo(1)
s − γ(1)

s log(p̂2). Analytic result
is marked with a darker symbol. On the left: no correction forfinite volume. On the right: finite volume
tamed-log taken into account.

regret that there was an error in the four loop resummation shown at the conference. We here
display the correct four loop result, which does not change the overall picture.

From the figure one can better understand the effect of one loop BPT: one is actually sitting on
a straight line, whose slope is dictated by the first loop coefficient. Only if higher loops are taken
into account a reliable understanding of what is going on canbe achieved. In particular, one can
easily force the series to oscillate widely by changing the coupling. We stress that convergence
properties should be assessed on a case by case basis,i.e. depending on the observable. The same
holds for TI-BPT and in general if also the scale is changed while switching to a new coupling.

As expected, at a fixed coupling we get milder and milder variations by switching on higher
and higher orders, while at a fixed order we get milder and milder variations by changing the
coupling. Convergence properties of the series seem reasonable forx2 andx3. For these couplings
it is interesting to point out that if one adds to the result ata given order the deviation from the
immediately lower order, one always ends up at the same result, which for example in the case of
Zp/Zs is 0.77(1)8. Besides that, resummed series are almost inverse of each other. The comparison
with the non perturbative result in [6] yields encouraging result: things are working pretty well in
theRI’-MOM scheme.

4. Treating anomalous dimensions

Let us go back to Eq. (2.7) (the scalar current at one loop). Wemake use of this one loop ex-
ample since the analytic result is known [9]. A naive application of Eq. (2.7) yields what is plotted
in Figure 2 on the left: the result is missed,as if one were subtracting too much by subtracting the
log. The effect is systematic: a similar picture is obtained forexample forZp. By computing on
different lattice sizes, one realizes that is a finite size effect, getting worse and worse as the volume

8This is a popular way to pin down a truncation error.
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decreases. We stress that this is apL == p̂
a Na = p̂N effect, L being expressed in terms of the

lattice spacing asL = Na. One could say that the log istamed by finite volume. Since we want to
regard our finite volume computations as inifite volume approximations, we need to correct for this
effect. A solution comes from computing the expected log in the continuum at the same values of
pL = p̂N one is interested in. The result is shown in Figure 2 on the right. Notice anyway that if
one stays away from the lower momenta results are anyway quite safe.

5. Conclusions and prospects

NSPT is a valuable tool to compute logarithmic-divergent renormalization constants for lattice
QCD. Now that configurations are stored, a lot of computations are possible and, in particular, a
full account of quark bilinears to three loops will be ready soon. The main caveat when making
use of our method is that care is needed when dealing with log’s, because of finite volume effects.

We are in a position to assess convergence properties of the series and to shed some light
on BPT, a blind application of which is never advisable. Evenwhen a non perturbative result is
available, our method can provide an important check to better assess systematic errors.
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