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1. Introduction

There is a large class of nonperturbative results or conjectured results for supersymmetric
theories, particularly supersymmetric Yang-Mills theories, in 3-D [1, 2, 3]. It would be very helpful
if we were able to test some of the techniques for studying SUSY theories by “solving” the theories
involved in a non-perturbative way. The lattice is the best candidate method for solving such
theories. Unfortunately, the lattice regulator almost inevitably breaks the SUSY. The lattice is,
after all, a regularization scheme designed to preserve exact gauge symmetry at the expense of
manifest Poincaré invariance and SUSY is an extension of the Poincaré group.

It is certainly possible to use the lattice to study a theory which possesses a symmetry broken
by the lattice action. For instance, QCD possessesO(4) invariance, broken by the lattice, but the
lattice is still used to study QCD. Unfortunately, for SUSY theories containing scalars, the scalar
mass term is low dimensionalandbreaks the SUSY. Therefore very fine tuning of the lattice action
is generally required to recover SUSY in the infrared. A great deal of work has gone into looking
for a way to preserve SUSY, at least in the small lattice spacing limit. Some very recent work,
much of which has been presented at this conference, includes [4, 5, 6]. Good reviews exist of
older work, including [7, 8], and more extensive reference lists can be found therein.

We argue here that, for all the 3-D theories of interest withN=2, one can proceed by actually
doing the fine tuning on a conventional lattice action, the Wilson action with Wilson fermions,
because these theories are super-renormalizable, such that loop corrections involving the ultraviolet
converge in powers of the lattice spacing and the tuning only requires a lattice perturbation theory
calculation to finite loop order. Further, we explicitly do this calculation for the case of SYM theory
plus fundamental matter. This holds out the possibility of testing some very interesting claims [2, 3]
of exact results inN=2 SYM theory with matter.

2. Super-renormalizability and SUSY breaking

Typically it is easy to write down a lattice gauge theory which, at tree level, will look in the
infrared like the theory of interest. The problem is that, in the UV (at the lattice spacing scale),
the lattice theory typically does not have the full symmetries of the theory we are interested in.
Generally it is possible to formulate lattice theories so that they have exact gauge and (hyper)cubic
symmetries. However, under SUSY, the variation of a fermionic field can involve the derivative of a
bosonic field; and since derivatives become finite differences on the lattice, SUSY will generically
be badly broken at the lattice spacing scale. Therefore, if we construct the lattice theory to satisfy
supersymmetric relations in the infrared, radiative effects involving UV (SUSY breaking) modes
will typically communicate those effects to the infrared modes of interest.

The IR effective theory is the theory one obtains, by writing down the most general continuum
quantum field theory consistent with the field content and symmetries of the lattice, and performing
a matching calculation between the lattice theory and that continuum effective theory, to determine
what the actual parameters of the IR effective theory are. For instance, if we made a tree level
lattice implementation of the Wess-Zumino model,

Lbare= ∂µΦ∗
∂

µΦ+ψ
† /∂ψ +

(
λΦψ

>eψ +h.c.
)

+λ
2
(

Φ†Φ
)2

, (2.1)
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with Φ a complex scalar andψ a two component spinor, then we would generically recover an
infrared theory where all terms permissible with this field content were present;

LIR = Z
φ

∂µΦ∗
∂

µΦ+Zψψ
† /∂ψ +m2

φ Φ∗Φ+mψψ
†
ψ +

(
λyΦψ

>eψ +h.c.
)

+λ
2
s

(
Φ∗Φ

)2
, (2.2)

plus irrelevant high dimension operators. The point is that the IR behavior typically involves radia-
tively generated terms which do not respect the SUSY. In particular one does not expectm2

ψ = m2
φ
.

In 4-D this problem is severe. Additive scalar mass renormalizations are divergently large atevery
loop order; a severe nonperturbative tuning is needed to remove them.

The beauty of 3-D is that the desired theory is generally super-renormalizable. Consequently,
the UV is very weakly coupled; specifically, as the lattice spacing is taken to zero, the coupling
at the lattice scale falls linearly witha. This means that, while the SUSY breaking nature of
the UV regulator radiatively induces SUSY breaking effects in the IR, the matching calculation
which determines them converges very quickly. At each loop order, we determine the matching
of parameters to one more power of the lattice spacinga. In the above model, if we compute the
mass squared for the scalar field, generated by UV physics, the contributions at different orders in
the loopwise expansion are again of orderλ 2, λ 4, λ 6, . . .. But λ 2 has mass dimension 1. Since
the matching calculation involves only UV physics, the only scale which can balance the explicit
powers of mass is the lattice spacing scale. Therefore, the terms in the loopwise expansion are of
orderλ 2/a at one loop,λ 4 at two loops andaλ 6 at three loops. The one and two loop contributions
are significant and must be removed by an appropriate counterterm. However, three and higher
loop effects vanish in thea→ 0 limit, and so can be neglected. For the scalar self-couplingλ 2

s , the
one loop correction is alreadyO(aλ 4), and so a tree level treatment is already sufficient.

We should stress here that the infrared cancellation which ensures that only the scalea appears
to balance the explicit mass dimensions in the coupling, is a generic property of matching calcu-
lations in effective field theory and contains no statement about the IR physics of SUSY. Infrared
divergences arise from large length scale (or low loop momentum) behavior. By construction the
two theories for which any matching in an effective field theory formulation is being performed
have the same IR behavior, and so any IR divergence will cancel in the difference. The statement
is then simply that the IR extension of the lattice theory does describe the SUSY theory of interest
provided that it contains the same degrees of freedom and that the coefficients of the terms in the
Lagrangian can be matched with those of the theory of interest.

In order to perform the perturbative matching calculation analytically, and tune the lattice the-
ory to ensure that the IR effective theory satisfies all relations implied by SUSY up toa suppressed
corrections, we need only compute two correlation functions, which must be sensitive to the scalar
and fermionic masses, to conduct the matching calculation. The obvious candidates are the respec-
tive two-point functions (self-energies). Further, we already know that the SUSY values vanish
identically. Therefore, all that is required is to compute the lattice fermionic self-energy at zero
momentum, at one loop, and the lattice scalar self-energy at zero momentum, at two loops, and to
assign counterterms to cancel these contributions. Therefore, the matching calculation will con-
sist of computing a handful of IR finite linear combinations of lattice regulated Feynman graphs
involving scalars, fermions, and gauge fields.
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3. Detailed treatment of the Wess-Zumino model

Consider a theory of scalars and fermions withN=2 SUSY in 3-D. The matter content is the
same as for a 4-DN=1 SUSY theory. To make the extension to gauge theories simpler, we consider
a theory with aglobal SU(Nc) symmetry, and fields in the fundamental,Φ f , ψ f , antifundamental,
Φa, ψa and singlet representations,Φs, ψs. We consider the most general superpotential. We
exclude mass terms because including them will not change the mass counterterms we will need
(any loopwise correction involving a mass term will beO(m2λ 2a) at worst).

We have chosen to implement fermions on the lattice using the Wilson action and will present
results for two values of the Wilson parameter,r = 1 andr = 1

2. Our results are presented as
expressions for the mass (counter)terms that are added to the Lagrangian in the obvious way. Mul-
tiplicative renormalization of couplings and wave functions is not needed at the order of interest.

We need to do three lattice Feynman integrals to complete the matching calculation, see [9]
for details. We can readily verify that, at low momenta, each integrand is well behaved. None
of the integrals can be done in closed form (to our knowledge), but all are relatively tractable by
quadratures; we find numerically,

Cys(r = 1) = 6.4706034146527591308 Cys(r = 0.5) = 5.057247581039541
Cy f(r = 1) = 2.29977456857632 Cy f(r = 0.5) = 2.22804716126902

Cyy(r = 1) = 5.425954134(5) Cyy(r = 0.5) = 6.8513618(8) .
(3.1)

In terms of these coefficients, the required renormalizations of the masses are

δm2
s,i j =

(
−dfλ

∗
lmiλlm j−

1
2

ξ
∗
ilmξ jlm

)
Cys

4πa
, δm2

f ,i j =−λ
∗
ilmλ jlm

Cys

4πa
,

δm2
a,i j = −λ

∗
limλl jm

Cys

4πa
, δM f ,i j = λ

∗
ilmλ jlm

Cy f

4π
,

δMs,i j =
(

dfλ
∗
lmiλlm j +

1
2

ξ
∗
ilmξ jlm

)
Cy f

4π
, δMa,i j = λ

∗
limλl jm

Cy f

4π
, (3.2)

at one loop and

δm2
s,i j =

{
dfλ

∗
nmiλnq jλ

∗
lqkλlmk+dfλ

∗
mniλqn jλ

∗
qlkλmlk+dfξ

∗
qniξqm jλ

∗
klmλkln+

1
2

ξ
∗
kmiξlm jξ

∗
knqξlnq

}
Cyy

16π2 ,

δm2
f ,i j =

{
λ
∗
imnλ jqnλ

∗
kqlλkml +dfλ

∗
inmλ jnqλ

∗
klqλklm+

1
2

λ
∗
ikl λ jkmξ

∗
nqmξnql

}
Cyy

16π2 ,

δm2
a,i j =

{
λ
∗
minλq jnλ

∗
qklλmkl +dfλ

∗
nimλn jqλ

∗
lkqλlkm+

1
2

λ
∗
kil λk jmξ

∗
nqmξnql

}
Cyy

16π2 , (3.3)

at two loops. Heredf is the dimension of the fundamental representation.

4. N=2 SU(Nc) gauge theories with fundamental matter

Now we extend these results to the case where gauge interactions are also present. The added
fields are a gauge fieldAµ , an adjoint fermionic gauginoχ, and an adjoint scalar field we will write
φ . In the approach where we obtain a 3-DN=2 supersymmetric theory by dimensional reduction
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of a 4-D,N=1 SUSY theory, the scalarφ is the gauge field component in the direction which was
compactified. Besides their gauge interactions, these fields also introduce new Yukawa and scalar
interactions, which are local and can be implemented in the obvious way.

Though the matching calculation as a whole is perfectly IR safe and gauge invariant, individual
diagrams are, in general, not. Each diagram will include a prefactor involving some combination
of the group invariants (TF andCF,A), the Yukawa couplings,df andnf +na. Since the matching
calculation is valid foranyLie group, we can factorize the diagrams based on this prefactor. New
counterterms are needed, which we name1

2δm2
φ

andδMχ ; they have the obvious definitions. The
new contributions to the one loop mass counterterms are,

(
δm2

a, f

)
ab

= −2g2CF δab

Cys

4πa
,

(
δm2

φ

)
AB

=−g2
(

(nf +na)TF +CA

)
δAB

Cys

4πa
,(

δMa, f

)
ab

= g2CF δab

Cg f

4π
,

(
δMχ

)
AB = g2CA

Cg f

4π
+g2

(
(nf +na)TF+CA

)
δAB

Cy f

4π
.(4.1)

The new two loop counterterms are

δm2
s,i j = g2

λ
∗
lmiλlm jCFdF

Csing
g

16π2 , (4.2)

(
δm2

a, f ;i j

)
ab

=g2
δabλ

∗
ilmλ jlmCF

C f und
g1

16π2 + g4
δi j δab

{
TFCF(nf +na)

C f und
g2

16π2 +C 2
F

(
C f und

g3

16π2 −
1
3

Σ2

16π2

)

+CFCA

(
C f und

g4

16π2 +
1
18

Σ2

16π2

)
− 4

3
TFCF

(
CF −

1
6
CA

)
(4πΣ)
16π2

}
, (4.3)

(
δm2

φ

)
AB

= g2
δABλ

∗
i jkλi jkTF

Cad j
g1

16π2 + g4
δAB

{
TFCF(nf +na)

Cad j
g2

16π2 +TFCA

Cad j
g3

16π2

+(CA)2

(
Cad j

g4

16π2 −
5
18

Σ2

16π2

)
− 4

3
TFCA

(
CF −

1
6
CA

)
(4πΣ)
16π2

}
. (4.4)

The constants appearing in these expressions are

Cg f(r = 1) =−Σ/2 Cg f(r = 0.5) = .097938749331668

Csing
g (r = 1) = 3.588328893(6) Csing

g (r = 0.5) = 17.8901895(7)
C f und

g1
(r = 1) =−4.89236097(1) C f und

g1
(r = 0.5) = 3.648535(2)

C f und
g2

(r = 1) = 10.2296763(2) C f und
g2

(r = 0.5) = 13.32776(1)

C f und
g3

(r = 1) = 22.712647140(8) C f und
g3

(r = 0.5) = 29.816565(2)

C f und
g4

(r = 1) =−2.647013(1) C f und
g4

(r = 0.5) = 9.051300(7)

Cad j
g1

(r = 1) = 7.75588650(2) Cad j
g1

(r = 0.5) = 14.526578(3)

Cad j
g2

(r = 1) = 17.536258926(7) Cad j
g2

(r = 0.5) = 30.769058(1)

Cad j
g3

(r = 1) =−.3347923(2) Cad j
g3

(r = 0.5) = .76791(1)

Cad j
g4

(r = 1) = 13.0938429(1) Cad j
g4

(r = 0.5) = 20.658655(8) ,

(4.5)

whereΣ = 3.17591153562522. The error in each constant has been determined conservatively.
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5. Conclusion

There are great technical challenges encountered in the attempt to formulate lattice theories
that can reproduce SUSY in the IR. The direction of the field has generally been to try to build
infrared SUSY behavior into the construction of the action. We have argued that, for 3-D theories, it
is feasible and straightforward instead to use the simplest possible action and perform the requisite
fine tuning of its parameters analytically. This does not prove as difficult as one might have feared.

We have performed these tunings for a class of theories displayingN=2 SUSY in 3-D and
containing arbitrary numbers of matter multiplets transforming in the fundamental representation
of the gauge group. The technique is robust in the sense that it relies only on theoretical principles,
like Wilson’s effective action formulation, and lattice implementations, like the Wilson action for
fermions, that have been rigorously studied for decades. More generally, the entire lattice action is
the most simple such construction with the appropriate IR limit, such that the many complications
that can arise in such theories are suitably manageable or altogether absent.

Figure 1: Diagrams needed for the renormalization of super QCD with matter fields.
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