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The 6-vertexF model on the square lattice exhibits a critical line with central chargeC = 1, termi-

nating in a critical point of the Kosterlitz-Thouless type. As such, its coupling to two-dimensional

quantum gravity by placing it onto the dynamically triangulated random surfaces (DTRS) of the

simplicial formulation yields an interesting realization of the limiting caseC = 1 where the con-

tinuum description of quantum gravity plus matter fields in two dimensions breaks down. Tech-

nically, since the general 6- and 8-vertex models of statistical mechanics are defined with respect

to four-valent lattices, the model has to be coupled todynamical quadrangulations. Generalizing

the well-known algorithmic tools for treating dynamical triangulations in a Monte Carlo simula-

tion to the case of these random lattices made of squares, we present extensive numerical results

for the critical-point properties of the coupled system, including the matter related as well as the

graph related critical exponents of the model.
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Since field theoretical formulations of Einstein gravity are perturbatively non-renormalizable,
constructive approaches toward a quantization of gravity have been an ever more active field of re-
search in the past decades [1]. The dynamical triangulations model in its Euclidean and Lorentzian
versions has proved a successful candidate for the construction of such a consistent theory of quan-
tum gravity [2]. The basic idea is to model the quantum fluctuations of space-time by a probabilistic
sum over an ensemble of discrete, simplicial manifolds [3]. For the Euclidean case in two dimen-
sions (2D), this ensemble is commonly taken as the set of all gluings of equilateral triangles to a
regular, usually closed surface of fixed topology, while counting each of the possible gluings with
equal weight. The resulting random-surface model and its simplicial generalisation to higher di-
mensions are numerically tractable, for instance by Monte Carlo (MC) simulations. In 2D, the use
of matrix models and generating-function techniques led to exact solutions for the cases of pure
Euclidean gravity [4] and the coupling of certain kinds of matter, such as the Ising model [5], to the
surfaces. Furthermore, the critical exponents governing the transitions are conjectured exactly from
conformal field theory as functions of the exponents on regular lattices via the so-called KPZ/DDK
formula [6]

∆̃ =
√

1−C+24∆−
√

1−C√
25−C−

√
1−C

, (1)

where∆ is the original scaling weight,̃∆ the “dressed” scaling weight upon coupling to gravity and
C the central charge of the matter variables. The field-theory ansatz leading to Eq. (1) breaks down
for central chargesC > 1, an effect which has been termed theC = 1 “barrier”, whereas discrete
models ofC > 1 matter coupled to dynamical triangulations are still well defined. This mismatch
of descriptions and its driving mechanism is still one of the less well understood aspects of the
dynamical triangulations model.

The 6-vertex model is defined by the Boltzmann weightsωi of its arrow configurations as
sketched in Fig.1 (for reviews see, e.g., Refs. [7, 8]). On regular lattices the 6- and 8-vertex mod-
els form one of the most general classes of models of statistical mechanics with discrete symmetry.
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Figure 1: Left: Allowed arrow configurations of the 6-vertex model with weightsωi = exp(−εi/kbT).
Right: Phase diagram of the symmetric 6-vertex model witha = ω1 = ω2, b = ω3 = ω4, andc = ω5 = ω6.
The locus of theF model with its Kosterlitz-Thouless (KT) phase transition runs along the diagonal.
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Special cases can be mapped onto more well-known Ising and Potts models or graph colouring
problems [8]. In 2D, several of these vertex models can be solved exactly, yielding a very rich
phase diagram with various transition lines as well as critical and multi-critical points [8]. Hence,
coupling this class of models to a fluctuating geometry of the dynamical triangulations type is of
obvious interest, both as a prototypic model of statistical mechanics subject toannealed connectiv-
ity disorderand as a paradigmatic type of matter coupled to 2D Euclidean quantum gravity.

Recently, the use of matrix model methods led to a solution of the thermodynamic limit of a
special 6-vertex model, theF model, coupled to planarφ4 graphs [9]. This model corresponds to a
C = 1 conformal field theory, i.e., it lies on the boundary to the regionC > 1, where the KPZ/DDK
formula (1) breaks down. The locus of theF model is depicted in the phase diagram of Fig.1 for
a (static) square lattice where the model exhibits a Kosterlitz-Thouless phase transition atβc = ln2
[7, 8]. The same type of transition is predicted on dynamical lattices, and in particular the critical
coupling βc = ln2 should agree with that on the square lattice [9]. Also, a special slice of the
8-vertex model could be analysed via transformation to a matrix model [10]. However, due to
intrinsic limitations of the analytical method, these studies can neither reveal the behaviour of the
matter related observables and the details of the occurring phase transition nor the fractal properties
of the graphs such as, e.g., their internal Hausdorff dimensiondh.

We found it therefore worthwhile to investigate this model by means of numerical MC simu-
lations [11]. Since 6- and 8-vertex models are generically defined on four-valent lattices, instead of
considering the more common dynamical triangulations or the dual planar, “fat” (i.e., orientable)
φ3 graphs, one has to use an ensemble of dynamicalquadrangulationsor the dualφ4 Feynman
diagrams as the geometry to model the coupling of vertex models to quantum gravity. For MC
simulations of 2D combinatorial dynamical triangulations orφ3 graphs, an ergodic set of updates
is given by the so-called Pachner moves [12]. An adaption of these link-flip moves to simulations
of quadrangulations proposed in Ref. [13] is shown in Fig.2. Via explicit counter-examples it can
be shown, however, that these moves donot in general constitute an ergodic dynamics for simu-
lations of dynamical quadrangulations. Introducing a second type of link-flip moves, a “two-link
flip” (see Fig.2), we constructed an algorithm for dynamical quadrangulations, which does not
show any signs of ergodicity breaking [14, 15, 16]. As expected for any local algorithm, however,
the update dynamics exhibits severe slowing down near criticality. To alleviate this problem, we
adapted the non-local “baby-universe surgery” method proposed in Ref. [17] for triangulations to
quadrangulations [15, 16]. For the vertex model part, we employed the loop-cluster algorithm [18],
slightly modified for the case of simulations on random lattices. These algorithmic developments
as well as the technical details of the simulational set-up will be discussed elsewhere [16].

grand−canonical, (1,3), (3,1)canonical, (2,2)

� � � � � � � � �� � � � � � � �

Figure 2: Analog of Pachner moves (left) and the “two-link flip” (right) forφ4 graph simulations.
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Figure 3: Internal energyU and specific heatCv.

Among the most easily measurable quantities are the internal energyU and the specific heat
Cv. The observed non-scaling ofCv with system size (see Fig.3) is a first evidence for the expected
KT-like transition. At the transition pointβ = βc = ln2, we find on our largestφ4 random graphs
(N2 = 65536 vertices) estimates ofU = 0.333355(11) andCv = 0.2137(12). Comparing with the
exact critical values for thesquare lattice[7, 8] of U = 1/3 andCv = 28(ln2)2/45≈ 0.2989, we
conjecture that the critical internal energy of theF model is not affected by the coupling to random
graphs. As shown in Fig.3, this is specific to the critical pointβc = ln2, where the curves for the
two lattice types cross. This probably indicates an additional common symmetry at criticality.

On coupling the vertex model to quantum gravity we expect a renormalization of the critical
exponents as prescribed by the KPZ/DDK formula (1), which should also marginally apply to the
present limiting caseC = 1. To find the usual critical exponents from the weights, one assumes that
the well-known scaling relations stay valid and thus arrives atα = 1−2∆ε

1−∆ε
, β = ∆P

1−∆ε
, γ = 1−2∆P

1−∆ε
,

dhν = 1
1−∆ε

, 2−η = (1−2∆P)dh, where∆ε is the weight of the energy operator and∆P denotes
that of the scaling operator corresponding to the spontaneous staggered polarisationP0, which here
takes on the rôle of a magnetisation. For the special case of an infinite-order KT phase transition
considered here, the usual exponents are not well-defined by power-law singularities, but the finite-
size scaling (FSS) exponentsβ/dhν = ∆P and γ/dhν = 1− 2∆P related to the polarisation still
have a well-defined meaning. From the exact exponentγ/dhν = 1/2 for a (static) square lattice
with dh = 2, we find the conformal weight∆P = 1/4, leading via Eq. (1) for C = 1 to ∆̃P = 1/2 and

henceβ̃/dhν = ∆̃P = 1/2, γ̃/dhν = 1−2∆̃P = 0.
For a numerical check of the exponentγ/dhν conjectured by the KPZ/DDK formula, there are

the two principal possibilities of considering the FSS of the staggered polarisabilityχ (analogous
to a susceptibility) at its maxima for the finite graphsor at the fixed asymptotic transition coupling
βc = ln2. In both cases, by analogy to the square-lattice model [19] we start from an FSS form
including a leading effective correction term, namely,

χ(N2) = AχNγ/dhν

2 (lnN2)ωχ . (2)

For the square-lattice one hasωχ = 2, whereas for the random-graph model considered here the
correction exponent is not known. While in the asymptotic regime both FSS sequences are expected
to lead to the same exponents, this is not obvious in the presence of large correction effects for the
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Figure 4: Left: FSS of the polarisability at the asymptotic critical couplingβc = ln2 together with a purely
logarithmic fit (see text). Right: Fraction of loops of length two.

accessible graph sizes (note that the dynamical lattices are highly fractal withdh ≈ 4). Indeed,
analyses of the maxima data turned out to be very intricate [11]. On the other hand, assuming a
purely logarithmic increase ofχ(N2) as implied by the KPZ/DDK predictionγ/dhν = 0, the data
at βc up toN2,max = 32768 yield good-quality fits already forN2,min & 512; forN2,min = 2048 the
parameters of this purely logarithmic fit shown in Fig.4 areAχ = 0.3960(96) andωχ = 2.295(11)
with a perfect goodness-of-fitQ = 0.39.

For the spontaneous polarisationP0 (analogous to a magnetisation), the FSS behaviour was
found to be qualitatively very similar to that of the polarisability. Here the FSS ansatz is taken as

P0(N2) = AP0N
−β/dhν

2 (lnN2)ωP0 . (3)

At βc the resultβ/dhν = 0.469(15) from a fit starting atN2,min = 2048 is consistent with the
KPZ/DDK conjectureβ/dhν = 1/2 within about two times the quoted standard deviation. We
note that the estimated correction exponentsωχ andωP0 differ largely [11] (see also Ref. [19]).

As far as the graph properties are concerned, we first looked at the coordination number dis-
tribution. The r.h.s. of Fig.4 shows the fraction of loops of length two in the graph as a function
of β which exhibits a peak atβ0 = 0.6894(54), in good agrement withβc = ln2≈ 0.693. In fact,
this observable, which clearly reflects the matter back-reaction on the graphs, turned out to be
much more suitable for locatingβc than more traditional quantities such as the peak location of the
polarisability [11].

The string susceptibility exponentγs is defined throughZ(N2) ∼ eµ0N2Nγs−3
2 [1+ O(1/N2)]

for the planar case. By decomposing the graphs into a self-similar tree of “baby universes”, the
distribution of minBUs of sizeB can be used to determineγs from

〈nN2(B)〉 ∼ N2−γs
2 [B(N2−B)]γs−2. (4)

This method, originally introduced for triangulations orφ3 graphs [17, 20], has been generalized
to φ4 graphs [11]. Pureφ4 graphs yieldγs =−1/2 in agreement with universality. For theF model
with central chargeC= 1, the scaling form has again to be augmented with logarithmic corrections.
We find that the resulting estimates are compatible withγs = 0 for β ≤ ln2 (critical phase) and with
γs =−1/2 in the ordered phase, in agreement with the KPZ/DDK conjecture.
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Finally we considered also the Hausdorff dimensiondh which previously was found difficult
to decide numerically between the contradictory predictions 4.83 and∞ asC→ 1 [21]. By a FSS
analysis of the (geometrical) two-point correlation function of the graphs and of their mean extent
we obtaineddh = 4, independent ofβ .
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