
P
o
S
(
L
A
T
2
0
0
5
)
2
5
4

Classical simulation of quantum λ φ 4

Tzahi Yavin∗

Department of Physics and Astronomy, York University
Toronto, ON Canada M3J 1P3
E-mail: t_yavin@yorku.ca

Takayuki Hirayama
USTC Shanghai Institute for Advanced Studies, 99 Xiupu Road
Pudong, Shanghai, China 201315
E-mail: hirayama@ustc-sias.cn

Bob Holdom
Department of Physics, University of Toronto
Toronto, ON Canada M5S 1A7
E-mail: bob.holdom@utoronto.ca

Roman Koniuk
Department of Physics and Astronomy, York University
Toronto, ON Canada M3J 1P3
E-mail: koniuk@yorku.ca

We consider the classical time evolution of a real scalar field in two dimensional Minkowski space

with a λ φ4 interaction. All the modes are initialized with an amplitude that gives the zero-point

energy spectrum of the corresponding quantum field theory, and the trajectories are averaged over

the random phase of each mode. By comparing the masses extracted from correlation functions to

the one- and two-loop quantum contributions to mass renormalization, we find that the classical

evolution incorporates loop effects of the quantum theory.We also compare to Monte Carlo

simulations of the quantum theory and find that the classicalscheme uses a tiny fraction of the

CPU time.
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1. Introduction

In quantum field theory, the vacuum is filled with zero-point energy to which each mode
contributes̄hω/2. This picture raises the question, what dynamics would emerge in an interacting
classical field theory if each mode is initialized with energy h̄ω/2. If we assume the phase of each
mode is randomly distributed, then Lorentz invariant correlation functions arise upon averaging
over phases. Classical zero-point fluctuations offree masslessscalar and vector fields, the Lorentz
invariance thereof, and the effects of phase averaging, have been considered before, most notably
by Boyer [1].

In [2], two of the present authors found critical and strong coupling behavior in classicalλφ4

theory that is strikingly similar to what is known about the quantum field theory. They also devel-
oped a perturbative expansion of the classical theory in thecontinuum and found a loop expansion
very similar, but apparently not identical, to that of quantum field theory. Here we attempt a more
quantitative comparison of the classical and quantum theories, where both are defined on the lat-
tice. Our interest is not in the continuum limit of these lattice theories, or their critical behavior; we
wish to compare physical masses that are safely above the inverse size of the systems, and safely
below the inverse lattice spacing. We focus on the loop corrections to these masses.

2. Time Evolution

We study a classicalλφ4 theory in 1+1 dimensional Minkowski space on a lattice with an
action

S = ∑
i

N−1

∑
j=0

φ̇2(i, j)
2

− (φ(i, j +1)−φ(i, j))2

2
− m2

0

2
φ2(i, j)− λ

4
φ4(i, j), (2.1)

whereh̄ = c = a = 1, anda is the lattice spacing along thex direction. The integersi and j label
the sites in thet andx directions, andj runs from 0 toN− 1. A periodic boundary condition is
imposed along thex direction, i.e. φ(i,N) = φ(i,0). The equations of motion are obtained from
the action and we adopt the leapfrog method, which is reversible and has second order accuracy, to
numerically integrate them.

To realize thēhω/2 contribution of each mode to the zero-point energy, the initial configura-
tion of interest to us is

φ0(i, j) =
N/2−1

∑
k=−N/2

1√
Nωk

cos(ωkat i +
2πk
N

j + θk), (2.2)

whereω2
k = 4sin2(πk/N)+ µ2 is the lattice dispersion relation,at is the lattice spacing along the

time direction, andθk is a phase uniformly distributed over[0,2π). We leave the massµ as a
parameter over which we iterate, since the physical mass will be different from the bare massm0.

The key point is that we use (2.2) to specify the initial conditions, φ(0, j) = φ0(0, j) and
φ̇ (1/2, j) = φ̇0(1/2, j), but evolve forward in time withλ 6= 0 to investigate the dynamics of the in-
teracting theory. We obtain expectation values by repeatedly starting from different sets of random
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Figure 1: Time (wavy) and space (smooth) correlators forN = 256, m2

0 = 51/N2, λ = 20/N2, andt f =

3N/4; for comparison we also display the significantly different free correlators (black curves) withµ = m0,
to show the effect of the mass renormalization.

phases. We use〈·〉 to denote this averaging, which gives an interesting indication of the emergence
of quantum effects if we compute the expectation values

〈φ0(i, j)φ0(i
′, j ′)〉 =

N/2−1

∑
k=−N/2

1
2Nωk

cos(ωkat(i − i′)+
2πk
N

( j − j ′)) (2.3)

= Re〈0|Tφ(i, j)φ(i′ , j ′)|0〉. (2.4)

The r.h.s of the second line is just the real part of the Feynman propagator, and thus implies that
the mass shift induced from the classical interaction term is exactly the same as the one-loop mass
correction in quantum field theory.

We calculate time, space, and zero-mode time correlators with respect to the final time slice
t f = at i f , which are defined respectively as:

Gt(i) ≡
〈

1
N

N−1

∑
j=0

φ(i f , j)φ(i f − i, j)

〉

, Gx( j) ≡
〈

1
N

N−1

∑
j ′=0

φ(i f , j)φ(i f , j + j ′)

〉

,

G0(i) ≡
〈

1
N2

N−1

∑
j, j ′=0

φ(i f , j)φ(i f − i, j ′)

〉

.

Any of these can be used to extract mass, and we find thatGx is the least reliable, and thatG0 and
Gt tend to agree well with each other. We concentrate on the timecorrelatorGt .

Fig. 1 demonstrates some important features of the classical simulation: (i) the system evolves
towards the renormalized physical mass from the initial condition; (ii) the masses from the various
correlators agree. This is an indication that Lorentz symmetry breaking due to lattice effects is not
significant, and (iii) the physical mass can be determined tohigh accuracy. To within a percent or
two all of the mass shift is due to the one-loop renormalization.
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3. A Precision Measurement of Mass

The one-loop graph on a lattice with discrete space and continuous time is given by

Π(m) =
1
N ∑

k

∫

dk′

2π
1

k′2 +4sin2(πk/N)+m2
=

1
2N ∑

k

1
√

4sin2(πk/N)+m2
. (3.1)

This mass renormalization effect can be used to define the one-loop gap equation,

m2
gap= m2

0 +3λΠ(mgap). (3.2)

Self-consistent solutionsmgap of this equation effectively sum up graphs with chains of bubbles,
where each bubble representsΠ, and allow the definition of a dimensionless couplingg≡ λ/m2

gap.
The one-loop graph is the only (log) divergent graph in this theory, and so the gap equation provides
a useful representation of the physics for quite a large region of them2

0-λ plane.
For the example in Fig. 1 we haveg= 0.2 andm2

gap= 101.7/N2, to be compared with the mass
extracted from the simulation ofm2 = 100/N2. Given that there are two-loop corrections to the
gap mass that are not included in the one-loop gap equation, our goal then is to decide whether the
difference between our extracted mass and the gap mass is consistent with the size of the two-loop
corrections from quantum field theory. At least at weak coupling we have seen that the evolving
classical field quickly settles down to a stable configuration. Our prescription is to average over
twenty equally spaced values oft f up to a final timet f = 10N (a temporal extent 10 times the
spatial extent) to obtain a mass. We then average between 10N and 20N to obtain a second mass.
If the second mass does not deviate significantly from the first, then we accept the first mass as a
reliable extracted mass.

4. Comparison to Quantum Methods

In the lattice quantum field theory we impose a periodic boundary condition along the time
direction as well, and takeat = a = 1 rather than 10at = a = 1 in the classical simulation. The
action is

S =
N−1

∑
i, j=0

(φ(i +1, j)−φ(i, j))2

2
+

(φ(i, j +1)−φ(i, j))2

2
+

m2
0

2
φ2(i, j)+

λ
4

φ4(i, j). (4.1)

With this different lattice regularization the one-loop self-energy graph and gap equation now be-
come

ΠE(m) =
1

N2

N/2−1

∑
k,k′=−N/2

1

4sin2(πk/N)+4sin2(πk′/N)+m2
, (4.2)

m2
Egap= m2

0+3λΠE(mEgap), (4.3)

with the subscript E standing for Euclidean. The resulting valuesmEgap andgE will thus differ
from mgap andg from our previous gap equation, and the behavior in them2

0-λ plane of these two
theories will be different. The reason for the difference isthat ΠE(m) → 1/m2 asm→ 0 while
Π(m) → 1/m. Previous Monte Carlo simulations of the quantum theory [3]put the value of the
critical coupling atg = 10.24 1, and that is where the physical mass is expected to vanish.

1The critical coupling obtained from density matrix renormalization group methods [4] is 9.98.
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In our quantum simulations we start with a hot start, and our updating scheme is the heat-
bath algorithm followed by a Wolff step to reduce critical slowing down [5]. We monitor phys-
ical quantities such as the size of the Wolff clusters, the action, and the autocorrelation time
of various operators. The physical mass is obtained by fitting the correlation functionGE(i) ≡
〈

1
N3 ∑N−1

i′, j ′,k′=0φ(i′, j ′)φ(i + i′,k′)
〉

to a cosh or a decaying exponential. We find that it gives physi-
cal masses compatible with the gap equation and that the massextracted at strong coupling is also
consistent with the expected critical behavior. The decrease of the physical mass towards zero as
gE is increased serves as one method for the determination of the location of the critical line. For
another, the order parameterΦ = 1

N2 ∑N−1
i, j=0 φ(i, j) and its histogram can be studied as the size of

the lattice is changed (see [3]).

5. The Two-Loop Effect

At leading perturbative order the difference between the physical mass and the gap mass is
determined by a single two-loop diagram, the “sunset” diagram, which is given by

Π2E(m,k) =
1

N4

N/2−1

∑
{p1,p2,q1,q2}=−N/2

G(p1 +k, p2)G(q1,q2)G(p1 +q1, p2 +q2), (5.1)

whereG−1(p1, p2) = 4sin2(π p1/N)+ 4sin2(π p2/N)+ m2 andk represents external momentum.
This calculation gives a correction to the 2-point functionat what corresponds to space-like external
momentum, since this is a Euclidean quantum theory, and we find thatΠ2E(m,k) monotonically
increases ask→ 0. The classical theory however has Lorentzian signature, and so we actually need
Π2 at the time-like on-shell momentum. We will useΠ2E(m,0) as an estimate for this. Our quantum
simulation data supportsΠ2E(m,0) as a good estimate of the difference between the physical and
gap masses for couplings as large asg ≈ 0.6. As a further check we have directly estimated the
single three-loop graph using the same technique as above (for smaller lattices) and found that it is
. g/2 times the size of the two-loop graph.

We therefore consider ag2 improved two-loop gap equation of the form

m2
gap= m2

0+[1− ε(mgap)]3Π(mgap)λ −6Π2E(mgap,0)λ 2. (5.2)

We have inserted a correction factor in theλ term to account for possible lattice artifacts - it is
important to account for this because a small correction in the λ term can compete in size with
the λ 2 term. This gap equation can be considered as a quantum model to be tested against the
classical simulation data. Our strategy then is to use (5.2)as a one parameter model for the extracted
physical massmphys from the classical simulation. We run the simulation for a range of values of
m0 andλ that produce values formphys very close to a fixedmgap, and thereby determineε(mgap)

through a best fit. We use 5000 trajectories for each determination of a mass. For the four values
m2

gap= (60,80,100,140)/N2 we findε(mgap) ≈ (0.032,0.029,0.029,0.029).

To test the quantum model formphys we isolate theg2 dependence to get

g2 = −{m2
phys−m2

0− [1− ε(mgap)]3Π(mgap)m
2
gapg}/6Π2E(mgap,0)m4

gap. (5.3)
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Figure 2: Plots showing theg dependence of the r.h.s of (5.3) using the classical simulation. The graphs
are labelled bym2N2 and the red solid line is theg2 quantum field theory prediction. Each plot displays the
results of 10 different random number seeds, which give an indication of the errors.

We then determine the r.h.s from the classical simulation for a fixedmgap and for a range ofm0

andg that givemphys≈ mgap. This is displayed in the plots of Fig. 2 where we see the residual
quadratic dependence ong, and compare to the superimposedg2 line of the quantum model. (The
points would lie along a straight line if there was nog2 effect.). These plots show that the results
of the classical simulation are very well described by the quantum model, where the coefficient of
theλ 2 term is given by the sunset diagram of quantum field theory. This is our main result.
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