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1. The formalism

One of us had pointed out that transverse lattice QCD (i.e. QCD with two continuous di-
mensions on light-front and two transverse dimensions on lattice), can be solved analytically in
closed form in the combineN — c and strong transverse gauge coupling lim8k [Although
this limiting theory differs from real QCD, we hope that the results will be particularly useful for
understanding deep-inelastic scattering structure functions dominated by valence quarks. In't
case, the scaling behaviour implies that the transverse momenta do not contribute to the lead
order, and so distorting them using a lattice may not be a severe drawback as long as we treat
light-front components exactly.

We study the limit of QCD defined by the actiogié held fixed as\ — o):
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Hereu, v label the light-front directions, andllabels the lattice directions. In tlig — oo limit,
the transverse lattice spaciag = O(Aqcp). For the fermions, we follow the Wilson prescription
in the transverse directions. The anisotropy parameteas to be determined non-perturbatively
by demanding as much restoration of rotational symmetry as possible, and the metric is
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In analysing this theory, the order of limits is important, because various limits do not commute
To obtain the correct phase of the theory, we firsglet— «, thenN — o, and therm — 0.

Starting with the above action, we eliminate the gauge degrees of freedom completely by exe
functional integrations ovek™ (after choosindA™ = 0) andUu(x). We then trade off the fermion
fields in favour of non-local boson fields, and obtain an effective action in term@lgb( y) =
P,y ( ) [1]. The stationary point value of this effective actidy,(d;J), yields the generating
functlonal for the connected Green'’s functionsNas- .

For Wilson fermions. the projection operator structure of the fermion hopping term simplifies
the formulae, and the results are simple modifications of those for the 't Hooft model. The tran:
verse tadpole insertions renormalising the quark mass vanish, and the chiral limit of the theo
remains am= 0 [1]. The chiral condensate, obtained using split-point regularisation and operato
formulation {4, is

2 2
@ = 2 W)y — = (L3)
L

m—0 a3 3

2. Meson states

The wavefunction for the meson state with spin-parity strudiugedefined as

@(p,q) = (@(p—a)l ¢(q)|Meson(p)) - (2.1)

255/2



Large-N QCD at strong transverse lattice gauge coupling Apoorva D. Patel

It satisfies a homogeneous Bethe-Salpeter equation with two types of quark-antiquark interactiol
gluon exchange in the longitudinal direction, and bilinear fermion hopping in the transverse direc
tions. In the reference frame with momentum components(p™ =1, p~ = M?/2, p, =0), the
interactions are independent of the™and “_L” components, and the Bethe-Salpeter equation is
easily projected on to the light-front:

®r(q =x /q 2n2<pr(p<1) (2.2)

For a quark-antiquark pair of massagandm,, we obtain = g?/ma? , P=principal value) 1],

D) = [MZ mop_m-P } (x)

X 1-x
= 2x(11—x) [§V++xv‘+ml} 2.3)
" /ol(zjyyr{ - §§P{<X_1y>z] ey + Z;[zwy) +y Vo) |
x [uzz(x)y++2(1n§ Y a0y ]

2.1 Symmetry consequences

Eq.2.3) is a 16-component matrix integral equation in Dirac space, and physical mesor
states have to be obtained by diagonalising it. Discrete symmetries of the action allow blocl
diagonalisation of EgZ.3) to four blocks of4 components each. Writing meson wavefunctions in
a basis that is the direct product of Clifford algebra bases in continuum and lattice directions,

‘D:;[‘%;JQL, rete {Lyh vy, 3lyhy e Ly v, iy vl . (2.4)

we havey , y"r¢ty? OrCL for each value of. Thus the lattice indexl” can be used as the block
label, and the exact degeneracylo£ n, andL = n, blocks implies that only three of the four
blocks are independent.

Without the transverse lattice dynamics, B3| reduces to the 't Hooft equatio]] and the
limit k — 0 is smooth. The non-singular transverse contribution proportion&f tepresents a
colour singlet quark-antiquark pair hopping from one light-front to the next. (Leaving ouytthe
matrices, the form of this contribution is similar to the fermion-antifermion annihilation diagram
for the massive Schwinger modé&]]) The strong transverse gauge coupling limit produces a tight
binding d-function constraint during the hopping, so that the transverse interaction is a wavefunc
tion at the origin effect and the meson orbital angular momentwmanishes. With spin-half
quarks, the meson helicities are restricte@,tex1, and the allowed spin-parity quantum numbers
for the mesons ard” = 0+, 1*.

Under the exchange of the quark and the antiquark, the meson wavefunction transforms
qudn(x; m;,m,) = C®T(1—x;m,,m;)C 1, whereC is the charge conjugation operator. 2 is
invariant under this exchange operation. Although parity is an exact symmetry of our formalism,
is not manifest because the light-front is not invariant under parity transformatior{xFad. — x)
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part of E,, can be associated with parity, however, and this parity symmetry is exact in even
block labeled byL. As a result, the eight possible spin-parity quantum numbers are distributec
in to the four blocks as two states of opposite parity in each block. In conventional notation
{ma,(0)} € ®cin,n, the degenerate pajp(n),a;(n)} € &, and{p(0),0} € Bc.

Restricted to the finite box € [0, 1], the spectrum of? is purely discrete as in the 't Hooft
model ], and the meson states can be labeled by a radial excitation quantum numhe?, 3..
in each block. Since the lowest state meson wavefuncmES‘rTl is symmetric, the exchange
symmetry alternates with, and the quark and the antiquark have opposite intrinsic parities, the
meson states have parly= (—1)" in each block.

2.2 Behaviour in the chiral limit

The singular part of the interaction kernel in Exj3) is the same as in the 't-Hooft model,
and depends only on the componefits, for each value ot.. The behaviour of the solutions in
certain limiting situations, therefore, can be obtained using the same methods as for the 't Hoc
model R, 5-8].

The singular part can be separated using the projegtichyt = 3 CDf;L(ZF'- Qyh),

MZ®_y (x) = [”f+ f_’%x] ®_ (9+B [ ayp [QD;L((XX)__; iy 0. @)

AP, (Y) — %q’_;l(y) )

dy- ¢ —20,.4(y) — %q}f;n(y) - (% + %)q)l:n(y) + (% B %)q)**;”(y) ’
m
23— %)q)l;nlnz(w -2+ %)¢+*2”1”2(y) '

K2 1

X—;L(X) = 2nai
(2.6)
For finite norm solutions, the integrals appearingxin, have to be finite. The solutior®_.
therefore vanish at the boundarieséisand (1 — x)P, and the exponents can be determined using
an ansat®_ ~xPi(1-x)P.,
The equations simplify in the chiral Iimitx_;nlnz vanishes whem = 0, and consequently
CD(”)n1 (m=0) coincide with the corresponding solutions of the 't Hooft equation. In particular, the

lightest meson is massless and has the Wavefuncttifby1> (m=0) = 1. This is the pseudoscalar
Goldstone boson of the theory, with the decay constant

1 /2N
(f)ag = V2(fr)pg oa Ve (2.7)
|

Asymptotically for largen, the masses and the wavefunctions behave as
n>1: o i, (X) = V2sin(nnx) , M2~ nrg?/a? . (2.8)

With the physical valueBl = 3 and fr ~ 130MeV, we estimate the cut-off ag/a, ~ 300MeV.
Fitting the slope of ther— (1300 — 17(1800) trajectory to its asymptotic behaviour, then gives
the gauge coupling?/4m ~ 2.3. With these parameters, the chiral condensate turns out to be
(QY) ~ —(165 MeV)®.

The masses of mesons in the other spin-parity blocks are shifted due to the non-singular p
of the interaction kernel. The solutions have to be determined numerically, and the parameter
can then be fixed by making the helicity0, + states fordJ = 1 mesons as degenerate as possible.
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3. Baryon states

Baryons are semi-classical solitons in the— oo limit. In this scenario, each valence quark
can be considered to be moving in the common Hartree potential provided by theNothi&r
valence quarks (sea quarks drop out inthe- o limit) [9]. This potential is static and of finite
range, and carries colour opposite to that of the valence quark. The potential experienced by
valence quark bound to a heavy antiquark has the same features, although it may have a differ
spatial dependence, and several techniques used to study the heavy quark effective theory cal
applied to the baryon case as well.

The baryon wavefunctions are completely antisymmetric in colour, and so fully symmetric
in space, spin and flavour indices. Furthermore, in the Hartree approximation, the ground ste
baryons have all the valence quarks in the same lowest state of the potential. The total wavefunct
is thus the product of identical single-particle wavefunctions; it is fully symmetric in space anc
satisfied = J. The baryons are solutions of the bosonised effective action, with

Qx") =a? Z/dx*w(x,xL)yﬂp(x,xL) = const (3.1)
X
So in the single baryon sector, the— oo stationary point of the effective action has to satisfy
a2 Sx, fd)(tr(ﬁap(x, X) VJB) = N. Extremisation oV (0;J = 0) leads to

1=ia" (xy)(igd—m)s?(x—y)— ig;IX‘ —y | T (XYY T (v, x)y"

— 183 (x=y) $ [0T (% X)GR)(1—iyh)T" (x—n,x—n)(1+i}n) (3.2)
+0" (% X)(1+iy)o" (x+nx+n)GR)(1—in)] ,

where we have chosen units to agt= 1 for simplicity, and

K2
G(R) = ., R=—(1—iw)o"(x,x)(1+iy)o" (x+n,x+n) . 3.3
e (L=im)oT (x)(1+iy) o ( ) 63
The meson stationary point is translationally invariant,
_ . [ d’p 1 . Pyt
T - _ p-(x=y) - _
GBZO(X7y) l/(zn.)z ¢—m—ZB:0(p)+I£ el 5xLyL7 ZB:O(p) 2T[p+ . (34)

With o5_,(x,x) O 1andRg_, = 0, the transverse lattice dynamics doesn't contribute to it. On the
contrary, the baryon stationary point is not translationally invariant, and we deconipse [

T 1Y) = Ta oY) + 8oy, OO H),  [axlf0OP=4,  @8)
in the Hartree approximation. The stationary point equation then yields (in momentum space),
d?k 24— ~ QZW
0= [ Gl TRy y (k-m+ 5 (3.6)

2 2 2 . . . .
Y [ o ot Pl o) T @ (P

255/5



Large-N QCD at strong transverse lattice gauge coupling Apoorva D. Patel

Here the transverse lattice dynamics contributes only through the wavefunction at the origin effe«
and renormalises the quark masstas m+ 8G(0) () /N. Extracting they"-component,
dk® . 2 dp" dg" dk* L e o B Fr o i Bt ot

arac TP+ [ S 5 2 Plipre) @O T 0+ ) o +p7) =0. 37)
To obtain the valence quark density in the barydf(k*)|> with k+ > 0, this nonlinear integral
eqguation has to be solved numerically, as in the case of the 't Hooft mbdel |

Alternatively, the baryon number constraint can be incorporated in the functional integral usin
a constant temporal Abelian background field, i.e. the chemical potenfsde e.g. 11]),

5(Q-NB) = [ [DH] expi(Q—~NB)H] . (38)
Functional integration at a fixed chemical potential shifts the self-energy of the quark propagator
S(p) = | Sy, . Tylp) = — (55 +u)y (3.9
b= P—m—2, ,(p)+ie Yo ZpzolP)= 2np* Hyy '

Indeed, this structure justifies the decomposition in E&)(
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