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We had previously obtained an integral equation for mesons in transverse lattice QCD, in the

limit of large number of colours and strong transverse lattice gauge coupling [1]. This equation

is a generalisation of the ’t Hooft equation [2], by inclusion of the spin degrees of freedom. We

analyse this equation to extract spectral properties and light-front wavefunctions of mesons. We

also extend the method to study baryon properties in the same limit.
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1. The formalism

One of us had pointed out that transverse lattice QCD (i.e. QCD with two continuous di-
mensions on light-front and two transverse dimensions on lattice), can be solved analytically in a
closed form in the combinedN → ∞ and strong transverse gauge coupling limits [3]. Although
this limiting theory differs from real QCD, we hope that the results will be particularly useful for
understanding deep-inelastic scattering structure functions dominated by valence quarks. In this
case, the scaling behaviour implies that the transverse momenta do not contribute to the leading
order, and so distorting them using a lattice may not be a severe drawback as long as we treat the
light-front components exactly.

We study the limit of QCD defined by the action (g is held fixed asN→ ∞):

S = a2
⊥∑

x⊥

∫
d2x

[
− N

4g2 ∑
µνa

Fa
µν(x)Fµνa(x) + ψ(x)

(
i ∑

µ
γµ∂µ −∑

µ
γµAµ −m

)
ψ(x)

+
κ

2a⊥
∑
n

{
ψ(x)(1+ iγn)Un(x)ψ(x+ n̂a⊥)+ψ(x+ n̂a⊥)(1− iγn)U†

n (x)ψ(x)
}]

. (1.1)

Hereµ,ν label the light-front directions, andn labels the lattice directions. In theg⊥→ ∞ limit,
the transverse lattice spacinga⊥ = O(ΛQCD). For the fermions, we follow the Wilson prescription
in the transverse directions. The anisotropy parameterκ has to be determined non-perturbatively
by demanding as much restoration of rotational symmetry as possible, and the metric is

1
2{γα ,γβ}= gαβ =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 . (1.2)

In analysing this theory, the order of limits is important, because various limits do not commute.
To obtain the correct phase of the theory, we first letg⊥→ ∞, thenN→ ∞, and thenm→ 0.

Starting with the above action, we eliminate the gauge degrees of freedom completely by exact
functional integrations overA− (after choosingA+ = 0) andUn(x). We then trade off the fermion
fields in favour of non-local boson fields, and obtain an effective action in terms ofσαβ (x,y) ≡
ψα(x)ψβ (y) [1]. The stationary point value of this effective action,Veff(σ ;J), yields the generating
functional for the connected Green’s functions, asN→ ∞.

For Wilson fermions. the projection operator structure of the fermion hopping term simplifies
the formulae, and the results are simple modifications of those for the ’t Hooft model. The trans-
verse tadpole insertions renormalising the quark mass vanish, and the chiral limit of the theory
remains atm= 0 [1]. The chiral condensate, obtained using split-point regularisation and operator
formulation [4], is

〈ψψ〉4d =
2

a2
⊥
〈ψψ〉2d −→m→0

− N
a3
⊥

√
g2

3π
. (1.3)

2. Meson states

The wavefunction for the meson state with spin-parity structureΓ is defined as

φΓ(p,q) = 〈ψ(p−q)Γψ(q)|MesonΓ(p)〉 . (2.1)
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It satisfies a homogeneous Bethe-Salpeter equation with two types of quark-antiquark interactions:
gluon exchange in the longitudinal direction, and bilinear fermion hopping in the transverse direc-
tions. In the reference frame with momentum componentsp = (p+ = 1, p− = M2/2, p⊥ = 0), the
interactions are independent of the “−” and “⊥” components, and the Bethe-Salpeter equation is
easily projected on to the light-front:

ΦΓ(q+ ≡ x) =
∫

dq−
d2q⊥
(2π)2 φΓ(p,q) . (2.2)

For a quark-antiquark pair of massesm1 andm2, we obtain (β ≡ g2/πa2
⊥, P≡principal value) [1],

µ2(x)Φ(x) ≡
[
M2− m2

1−β
x

− m2
2−β

1−x

]
Φ(x)

=
1

2x(1−x)

[
m2

1

2x
γ+ +xγ−+m1

]
(2.3)

×
∫ 1

0

dy
2π

{
− g2

a2
⊥

P
[ 1
(x−y)2

]
γ+Φ(y)γ+ +

κ2

a2
⊥

[
2Φ(y)+∑

n
γnΦ(y)γn

]}

×
[

µ2(x)
2

γ+ +
m2

2

2(1−x)
γ+ +(1−x)γ−−m2

]
.

2.1 Symmetry consequences

Eq.(2.3) is a 16-component matrix integral equation in Dirac space, and physical meson
states have to be obtained by diagonalising it. Discrete symmetries of the action allow block-
diagonalisation of Eq.(2.3) to four blocks of4 components each. Writing meson wavefunctions in
a basis that is the direct product of Clifford algebra bases in continuum and lattice directions,

Φ = ∑
C,L

ΦC;LΓC;L , ΓC;L ∈ {
1,γ+,γ−, 1

2[γ+,γ−]
}⊗{

1,γn1,γn2, 1
2[γn1,γn2]

}
, (2.4)

we have∑n γnΓC;Lγn ∝ ΓC;L for each value ofL. Thus the lattice index “L” can be used as the block
label, and the exact degeneracy ofL = n1 andL = n2 blocks implies that only three of the four
blocks are independent.

Without the transverse lattice dynamics, Eq.(2.3) reduces to the ’t Hooft equation [2], and the
limit κ → 0 is smooth. The non-singular transverse contribution proportional toκ2 represents a
colour singlet quark-antiquark pair hopping from one light-front to the next. (Leaving out theγ-
matrices, the form of this contribution is similar to the fermion-antifermion annihilation diagram
for the massive Schwinger model [5].) The strong transverse gauge coupling limit produces a tight
bindingδ -function constraint during the hopping, so that the transverse interaction is a wavefunc-
tion at the origin effect and the meson orbital angular momentumLz vanishes. With spin-half
quarks, the meson helicities are restricted to0,±1, and the allowed spin-parity quantum numbers
for the mesons areJP = 0±,1±.

Under the exchange of the quark and the antiquark, the meson wavefunction transforms as
EqqΦ(x;m1,m2) = CΦT(1−x;m2,m1)C

−1, whereC is the charge conjugation operator. Eq.(2.3) is
invariant under this exchange operation. Although parity is an exact symmetry of our formalism, it
is not manifest because the light-front is not invariant under parity transformation. The(x↔ 1−x)
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part of Eqq can be associated with parity, however, and this parity symmetry is exact in every
block labeled byL. As a result, the eight possible spin-parity quantum numbers are distributed
in to the four blocks as two states of opposite parity in each block. In conventional notation,
{π,a1(0)} ∈ΦC;n1n2

, the degenerate pair{ρ(n),a1(n)} ∈ΦC;n, and{ρ(0),σ} ∈ΦC;1.

Restricted to the finite boxx∈ [0,1], the spectrum ofM2 is purely discrete as in the ’t Hooft
model [2], and the meson states can be labeled by a radial excitation quantum numbern= 1,2,3. . .

in each block. Since the lowest state meson wavefunctionΦ(n=1)
−;L

is symmetric, the exchange
symmetry alternates withn, and the quark and the antiquark have opposite intrinsic parities, the
meson states have parityP = (−1)n in each block.

2.2 Behaviour in the chiral limit

The singular part of the interaction kernel in Eq.(2.3) is the same as in the ’t-Hooft model,
and depends only on the componentsΦ−;L for each value ofL. The behaviour of the solutions in
certain limiting situations, therefore, can be obtained using the same methods as for the ’t Hooft
model [2, 5–8].

The singular part can be separated using the projection,γ+Φγ+ = ∑L Φ−;L(2ΓL⊗ γ+),

M2Φ−;L(x) =
[

m2
1

x
+

m2
2

1−x

]
Φ−;L(x)+β

∫ 1

0
dyP

[Φ−;L(x)−Φ−;L(y)
(x−y)2

]
+ χ−;L(x) , (2.5)

χ−;L(x)=
κ2

2πa2
⊥

∫ 1

0
dy·





4Φ+;1(y)− 2m1m2
x(1−x)Φ−;1(y) ,

−2Φ+;n(y)− m1m2
x(1−x)Φ−;n(y)− (m1

x + m2
1−x)Φ1;n(y)+(m1

x −
m2

1−x)Φ+−;n(y) ,

2(m1
x −

m2
1−x)Φ1;n1n2

(y)−2(m1
x + m2

1−x)Φ+−;n1n2
(y) .

(2.6)
For finite norm solutions, the integrals appearing inχ−;L have to be finite. The solutionsΦ−;L

therefore vanish at the boundaries asxβ1 and(1−x)β2, and the exponents can be determined using
an ansatzΦ−;L ∼ xβ1(1−x)β2.

The equations simplify in the chiral limit.χ−;n1n2
vanishes whenm = 0, and consequently

Φ(n)
−;n1n2

(m= 0) coincide with the corresponding solutions of the ’t Hooft equation. In particular, the

lightest meson is massless and has the wavefunctionΦ(n=1)
−;n1n2

(m= 0) = 1. This is the pseudoscalar
Goldstone boson of the theory, with the decay constant

( fπ)4d =
√

2( fπ)2d −→m→0

1
a⊥

√
2N
π

. (2.7)

Asymptotically for largen, the masses and the wavefunctions behave as

nÀ 1 : Φ(n)
−;n1n2

(x)'
√

2sin(nπx) , M2
n ' nπg2/a2

⊥ . (2.8)

With the physical valuesN = 3 and fπ ' 130MeV, we estimate the cut-off asπ/a⊥ ' 300MeV.
Fitting the slope of theπ −π(1300)−π(1800) trajectory to its asymptotic behaviour, then gives
the gauge couplingg2/4π ' 2.3. With these parameters, the chiral condensate turns out to be
〈ψψ〉 ' −(165 MeV)3.

The masses of mesons in the other spin-parity blocks are shifted due to the non-singular part
of the interaction kernel. The solutions have to be determined numerically, and the parameterκ
can then be fixed by making the helicity= 0,± states forJ = 1 mesons as degenerate as possible.
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3. Baryon states

Baryons are semi-classical solitons in theN → ∞ limit. In this scenario, each valence quark
can be considered to be moving in the common Hartree potential provided by the otherN− 1
valence quarks (sea quarks drop out in theN → ∞ limit) [ 9]. This potential is static and of finite
range, and carries colour opposite to that of the valence quark. The potential experienced by a
valence quark bound to a heavy antiquark has the same features, although it may have a different
spatial dependence, and several techniques used to study the heavy quark effective theory can be
applied to the baryon case as well.

The baryon wavefunctions are completely antisymmetric in colour, and so fully symmetric
in space, spin and flavour indices. Furthermore, in the Hartree approximation, the ground state
baryons have all the valence quarks in the same lowest state of the potential. The total wavefunction
is thus the product of identical single-particle wavefunctions; it is fully symmetric in space and
satisfiesI = J. The baryons are solutions of the bosonised effective action, with

Q(x+)≡ a2
⊥∑

x⊥

∫
dx−ψ(x,x⊥)γ+ψ(x,x⊥) = const. (3.1)

So in the single baryon sector, theN → ∞ stationary point of the effective action has to satisfy
a2
⊥∑x⊥

∫
dx−tr(σαβ (x,x)γ+

αβ ) = N. Extremisation ofVeff(σ ;J = 0) leads to

1 = iσT(x,y)(i∂/−m)δ (2)(x−y)− ig2

2
|x−−y−| σT(x,y)γ+σT(y,x)γ+

− iδ (2)(x−y)∑
n

[
σT(x,x)G(R)(1− iγn)σT(x−n,x−n)(1+ iγn) (3.2)

+ σT(x,x)(1+ iγn)σT(x+n,x+n)G(R)(1− iγn)
]
,

where we have chosen units to seta⊥ = 1 for simplicity, and

G(R) =
κ2

2(1+
√

1+κ2R)
, R=−(1− iγn)σT(x,x)(1+ iγn)σT(x+n,x+n) . (3.3)

The meson stationary point is translationally invariant,

σT
B=0(x,y) =−i

∫
d2p

(2π)2

1
p/−m−ΣB=0(p)+ iε

eip·(x−y)δx⊥y⊥ , ΣB=0(p) =− g2γ+

2π p+ . (3.4)

With σB=0(x,x) ∝ 1 andRB=0 = 0, the transverse lattice dynamics doesn’t contribute to it. On the
contrary, the baryon stationary point is not translationally invariant, and we decompose [10]

σB=1(x,y) = σB=0(x,y)+δx⊥y⊥ f ∗(x−)γ+ f (y−) ,
∫

dx−| f (x−)|2 = 1
4 , (3.5)

in the Hartree approximation. The stationary point equation then yields (in momentum space),

0 =
∫

d2k
(2π)2 | f̃ (k)|2γ+γ−(k/− m̃+

g2γ+

πk+ ) (3.6)

+ 4g2γ+
∫

d2p
(2π)2

d2q
(2π)2

d2k
(2π)2P

[ 1
(p+)2

]
f̃ ∗(q) f̃ (k) f̃ ∗(k+ p) f̃ (q+ p) .
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Here the transverse lattice dynamics contributes only through the wavefunction at the origin effect,
and renormalises the quark mass asm̃= m+8G(0)〈ψψ〉/N. Extracting theγ+-component,
∫

dk+

4π2k+ | f̃ (k+)|2 +
∫

dp+

2π
dq+

2π
dk+

2π
P
[ 1
(p+)2

]
f̃ ∗(q+) f̃ (k+) f̃ ∗(k+ + p+) f̃ (q+ + p+) = 0 . (3.7)

To obtain the valence quark density in the baryon,4| f (k+)|2 with k+ ≥ 0, this nonlinear integral
equation has to be solved numerically, as in the case of the ’t Hooft model [10].

Alternatively, the baryon number constraint can be incorporated in the functional integral using
a constant temporal Abelian background field, i.e. the chemical potentialµ (see e.g. [11]),

δ (Q−NB) =
∫

[Dµ] exp
[
i(Q−NB)µ] . (3.8)

Functional integration at a fixed chemical potential shifts the self-energy of the quark propagator,

S(p) =
i

p/−m−Σµ 6=0(p)+ iε
δx⊥y⊥ , Σµ 6=0(p) =−

(
g2

2π p+ + µ
)

γ+ . (3.9)

Indeed, this structure justifies the decomposition in Eq.(3.5).
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[11] H.S. Sharatchandra and J. Trampetić, Extracting hidden fermions from bosonic effective theories,
Phys. Lett.144B(1984) 433.

P
o

S
(L

A
T

2
0

0
5

)2
5

5

255 / 6255/6

P
o
S
(
L
A
T
2
0
0
5
)
2
5
5


