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1. Introduction

Perturbation theory can be a frustrating tool for field theorists. Sometimpspitdes ex-
tremely accurate answers, sometimes it is not even qualitatively correeicéntryears, our main
goal has been to construct modified perturbative series which arergimy and accurate. As
briefly reviewed in Section 2, our approach consists in removing largecielfigurations in a way
that preserves the closeness to the correct answer.

In the case of quenchgdCD, there are several questions that are relevant for this approach
and that have been addressed. How sensitive is the average pld&jteetidarge field cutoff [1]?
How doesP behave when the coupling becomes negative [2]? How &odiffer from its weak
coupling expansion [3, 4]? Are all the derivativedofvith respect tg3 continuous in the crossover
region? The analysis [4, 5] of the weak seriesPoup to order 10 [6] suggests an (unexpected)
singularity in the second derivative Bf or in other words in the third derivative of the free energy.
In the following, we report our recent attempts to find this singularity. As alltéchnical details
regarding this question have just appeared in a preprint [5], we willsuntymarize the main results
leaving room for more discussion regarding the difference betwe@sserd the numerical values
of P.

2. Large field configurations and perturbation theory

The reason why perturbation theory sometimes fail is well understood&tarsfield theory.
Large field configurations have little effect on commonly used observabtese important for the
average of large powers of the field and dominate the large order bebaperturbative series. A
simple way to remove the large field configurations consists in restricting tige k&rintegration

for the scalar fields.
@hax
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For a generic observab@bs in a A ¢* theory, we have then

K
Obs(A) ~ %ak(%ax))\k
k=

The method produces series which apparently converge in nontriges cach as the anharmonic
oscillator andD = 3 Dyson hierarchical model [7, 8].

The modified theory with a field cutoff differs from the original theory. tdoately, it seems
possible, for a fixed order in perturbation theory, to adjust the field tttodn optimal value
@nax(A,K) in order to minimize or eliminate the discrepancy with the (usually unknown) corre
value of the observable in the original theory. In a simple example[9], tbagitoupling can be
used to calculate approximately this optingaxA,K). This method provides an approximate
treatment of the weak to strong coupling crossover and we hope it cattdrgled to gauge theory
where this crossover [10] is a difficult problem. The calculation of the medifoefficients remains
a challenge, however approximately universal features of the tran&iétween the small and
large field cutoff limits for the modified coefficients of the anharmonic oscillatdd,[ suggest
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the existence of simple analytical formulas to describe the field cutoff deperdf large orders
coefficients.

This method needs to be extended to the case of lattice gauge theories. hngifieaences
with the scalar case need to be understood. For compact groups ssldfiNgs the gauge fields are
not arbitrarily large. Consequently, it is possible to define a sensibleyta¢aegative = 2N /¢?.
However, the average plaquette tends to two different values in the two Gfnits +0 [2]. This
precludes the existence of a regular perturbative series gbeud. A first order phase transition
nearf3 = —22, was also observed [2] f&U(3).

The impossibility of having a convergent perturbative series abdsit 0 is well understood
[12] in the case of the partition function for a single plaquette which afteggdixing to the
identity on three links reads.

zZ= /dUe—B<l—%ReTfU> , 2.1)

If we expand the group elemeldt= €9 with A = A2T2 and the Haar measure in powersgpive
obtain a converging sum that allows us to calculasecurately, however, the “coefficients” aye
dependent. This comes from the finite bounds of integration of the galdgethat are proportional

to 1/g. If g2 is small and positive, we can extend the range of integration to infinity withserro
that seem controlled by €°. By “decompactifying” the gauge fields, we have transformed a
converging sum into a power seriesgnwith constant coefficients growing factorially with the
order. The situation is now resemblant to the scalar case and can be wsmgdhis analogy.
We can introduce a gauge invariant field cutoff that is treated @mdependent quantity. For a
given order ing, one can use the strong coupling expansion to determine the optimal valug of th
cutoff. This provides a significant improvement in regions where neitleakvor strong coupling

is adequate [12].

This program can in principle be extended to LGTIxlimensional lattices, however the cal-
culation of the modified coefficients is difficult. An appropriately modified im@rof the stochastic
method seems to be the most promising for this task. As the technology for corgplesitask is
being developed, we will discuss several questions about the ayaeageette and its perturbative
expansion.

3. The average plaquette and its perturbative expansion in gegnchedQCD

We now consider &U(3) lattice gauge theory in 4 dimensions without quarks (quenched
QCD). We use the Wilson action without improvement. Our main object will be the geera
plaquette action denote®l and can be expressed a9 (In(Z)/6L*)/dB. The effect of a gauge
invariant field cutoff is very small but of a different size below, neaalbovef3 = 5.6 (see Fig. 6
of Ref. [1]). This is in agreement with the idea that modifying the weight ofahge field config-
urations affects the crossover behavior [13]. The weak couplingssarP has been calculated up
to order 10 in Ref. [6]:

10
Ru(1/B) =S bmB™™+....
m=1

The coefficients are given in table 1. The values corresponding to ties sed the numerical data
calculated on a T6lattice is shown in Fig. 3. A discrepancy becomes visible bgbow 6. The
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WEAK ORDER 10; PADE 4 over 6 STRONG PADE 7 over 7

Figure 1: Regular weak series (blue) and 4/6 weak Padé (red) for tiogiptte (left); 7/7 strong Padé (right)

FIT ORDER 8 FIT ORDER 10

—_ B

LOG 10 DI FF
o
(4]

LOG 10 DI FF

Figure 2: Logio|P — Rw/| for order 8 (left) and 10 (right, in a different range Bj; the constant is fitted
asumminga? (blue) ora* (red).

situation can be improved by using Padé approximants, however, theyt dhow any change in
curvature and often have poles nghe= 5.2. For comparison, Padé approximant for the strong
coupling expansion [14] depatrt visibly from the numerical values whéecomes slightly larger
than 5. In conclusion, it is not clear that by combining the two series we eaia gomplete
information regarding the crossover behavior.

The difference between the weak coupling expan$ignand the numerical dat& can be
further analyzed. From the example of the one-plaquette model [12¢aurié infer that by adding
the tails of integration, we should make errors of ordetf for some constar®. Consistently
with this argument, the difference should scale as a power of the lattice gpaaimely

w2 g\ A
Ponper = (P~ ) D0 (55 (3.

A case forA = 2 has been made in Ref. [3] based on a series of order 8. Anothesaslpports
A = 4 (the canonical dimension &f,,F") [4, 15]. Fig. 3 shows fits at different orders and in
different regions that support each of these possibilities. It would tezesting to study cases
where long series are available and non-perturbative effects wedirstod in order to define a
prescription to extract the power properly.

The serieRy has another intriguing featurey, = by/by-1, the ratio of two successive co-
efficients seem to extrapolates near 6 when- o whenm becomes large [4]. This suggests a
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behavior of the form

P=(1/Bc—1/B) Y(Ao+Au(Bc— B> +....)

as encountered in the study of the critical behavior of spin models. Werbamalyzed [5] the
series using estimators [16] known as the the extrapolated ﬁgba(nd the extrapolated slope
(Sy) in order to estimatg@; andy. We found that the weak series suggests

PO (1/5.74—1/B)1%8. (3.2)

These estimators are sensitive to small variations in the coefficients ancdskavarkable stability
when the volume is increased frorfi ® 24'. The numbers are in good agreement with the esti-
mates of Ref. [4] with other methods. A finite radius of convergence isxp#aed and one does
not expect any singularity between the limits where confinement and asympéetitom hold. It
may simply be that the series is too short to draw conclusion about its asympbawior. A
simple example where this happens [5] is

QB) = [ dte 1~ tpe/ (ap)] . 33)

with a sufficiently large. Ifm << a, rm ~ Bc(1+ (y—1)/m), Form >> a we haver, 0 mand
the coefficients grow factorially.

If we take Eq. (3.2) seriously, it implies that the second derivativié difverges nea8 = 5.7.
We have searched for such a singularity [5]. We have shown that gheip¢he third derivative of
the free energy present ofi littices disappears if the size of the lattice is increased isotropically
up to a 10 lattice. On the other hand, on>4L3 lattices, a jump in the third derivative persists
whenL increases. Its location coincides with the onset of a non-zero avevagdleef Polyakov
loop and seems consequently related to the finite temperature transition.uld $isonoted that
the possibility of a third-order phase transition has been discussedféatied theories of the
Polyakov's loop [17].

A few words about the tadpole improvement [18] for the weak series. elfcensider the
resummation

K
Rv(1/B) =5 emBr™+O(B"™) (3.4)
m=1

with Br = B(1— S m-1bmB™™), the ratiosey/em-1 stay close to -1.5 fom up to 7, but seem to
start oscillating more for largen.

m| 1 2 3 4 5 6 7 8 9 10
bm || 2| 1.2208| 2.9621| 9.417 | 34.39| 136.8 | 577.4| 2545 | 11590| 54160
€én || 2] -2.779| 3.637 | -3.961| 4.766| -3.881| 6.822| -1.771| 17.50 | 48.08

Table 1: by: regular coefficientsgy: tadpole improved coefficients
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