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1. Introduction

Random matrix theory (RMT) is a useful tool to analyze a wide variety of complex systems,
see, e.g., the reviews [1, 2]. It can be used as a model to explain certain qualitative aspects of
physical systems, but it also provides model-independent analytical results for universal properties
of eigenvalue spectra. Here, we focus on the latter application of RMT. Ina series of papers
[3, 4, 5], Jackson and coworkers investigated the normal modes of the eigenvalue spectrum of
various random matrix ensembles. These normal modes describe correlated fluctuations of the
eigenvalues about their most probable values. They offer an independent way of understanding
spectral correlations and serve as a complementary tool in the analysis of empirical eigenvalue
spectra. In Ref. [5] it was suggested to subject the Dirac operator of lattice QCD to a normal-mode
analysis. Such an analysis is the main subject of the present paper. We shall see that our results
agree with the expectations of Ref. [5]: most of the normal modes are described by RMT, but there
are deviations from the random matrix result for normal modes with long wavelengths. The scale
at which these deviations start to occur are related to the boundary of theε-regime of QCD [6]. In
condensed matter physics, a related scale is known as the Thouless energy [7].

2. Normal modes in chiral random matrix theory

Chiral RMT is obtained by retaining the chiral structure of the QCD Dirac operator /D and
replacing its matrix elements by random numbers [8],

/D →
(

0 iW
iW † 0

)

. (2.1)

We restrict ourselves to the physical case of gauge group SU(3) and fermions in the fundamental
representation in whichW is a complex matrix of dimensionN × (N + ν) [9]. The matrix in
Eq. (2.1) has|ν | eigenvalues equal to zero, thusν can be interpreted as the topological charge.
Without loss of generality, we takeν ≥ 0.

The nonzero eigenvalues ofi /D come in pairs±λk (k = 1, . . . ,N). We are interested in the
joint probability distributionPN(λ1, . . . ,λN) of the eigenvaluesλk. For the probability distribu-
tion of the elements ofW we choose a Gaussian, exp(−NΣ2 trWW †), and an additional factor of

∏N f

f=1det( /D+m f ) which corresponds to the fermion determinant due toN f flavors with massesm f .
In the following, we only consider massless flavors. The parameterΣ denotes the absolute value of
the chiral condensate. After a singular value decomposition ofW , the joint probability distribution
becomes

PN(λ1, . . . ,λN) = N ∆2(λ 2)
N

∏
k=1

λ 2(N f +ν)+1
k e−NΣ2λ 2

k , (2.2)

whereN is a normalization constant and∆ is the Vandermonde determinant,∆(x) = ∏i< j(xi−x j).
We see from Eq. (2.2) thatN f andν only occur in the combinationN f + ν , i.e., a massless flavor
can be traded for one unit of topological charge. We can therefore set N f = 0 and only retainν .
For further reference, we note that the global spectral density of the random matrix model (2.1) is
given by the Wigner semicircle,ρ(λ ) = (2NΣ/π)(1− (Σλ/2)2)−1/2.
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We assume that theλk are ordered with 0≤ λ1 ≤ . . .≤ λN . The most probable locations of the
eigenvalues are given by the maxima ofPN . These are obtained when the eigenvalues are located at
the zeros of Laguerre polynomials, see Ref. [5] for details. SincePN is symmetric in its arguments,
it suffices to consider a single maximum, denoted byP0

N . Near this maximum, the logarithm ofPN

can be approximated by

lnPN ≈ lnP0
N +

1
2 ∑

i j

δλiCi jδλ j (2.3)

with a real symmetric matrixC given in Ref. [5]. The eigenvalues of this matrix are

ωk = −4kNΣ2 (2.4)

with k = 1, . . . ,N. Note that theωk are independent ofν . The eigenvectorsφ (k) of C, whose
explicit form can be found in Ref. [5], are the normal modes of the random matrix spectrum. They
are statistically independent and describe correlated fluctuations of the eigenvalues about their most
probable values. The eigenvaluesωk measure the magnitude of these fluctuations. The main focus
of the present paper is a comparison of the normal mode spectrum of the lattice Dirac operator with
the analytical result (2.4), and the interpretation of deviations from this result.

3. Unfolding and normal modes in empirical spectra

In Secs. 4 and 5 we will present ensembles of numerical eigenvalue spectra obtained in RMT
and in lattice QCD, respectively. In order to compare these data to universal analytical predictions
of RMT, the dependence of the global level densityρ on system-specific details must be eliminated.
This is done by an unfolding procedure in which the energiesE are rescaled according to

E → ξ (E) =
∫ E

−∞
dE ′ρ(E ′) . (3.1)

By construction, the mean level spacing or, equivalently, the mean level density, of the unfolded
energiesξ is equal to unity. The quantity on the right-hand side of Eq. (3.1) is called the staircase
function. There are two different methods of determiningρ(E), known as spectral averaging and
ensemble averaging, respectively. They can potentially lead to differentresults because they probe
different energy scales of the spectra. For the present application, the natural choice is ensemble
averaging, see Refs. [4, 10] for details.

After unfolding, a single spectrum consists ofN eigenvaluesx1, . . . ,xN with 〈xi〉 = i, where
〈· · ·〉 denotes an ensemble average. To investigate the normal mode spectrum, i.e., the fluctuations
of the eigenvalues about their average positions, we construct the realand symmetric correlation
matrix [3]

Di j = 〈(xi −〈xi〉)(x j −〈x j〉)〉 = 〈xix j〉−〈xi〉〈x j〉 (3.2)

whose eigenvalues will be denoted byαk.
Within RMT, the matricesC and D are related. If the small-amplitude approximation in

Eq. (2.3) holds, the eigenvectors ofC and D are identical, and the eigenvalues ofD andC are
related byαRMT

k = −1/ω̃k, whereω̃k is the dispersion relation of the normal modes on the unfol-
ded scale. The latter is obtained by rescaling Eq. (2.4) with a numerical factor [4], resulting in

αRMT
k = − 1

ω̃k
=

N

4
√

2πk
. (3.3)
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Figure 1: The data points in the plot on the left-hand side represent the eigenvalues of the correlation matrix
(3.2) obtained from a numerical simulation of the random matrix model (2.1) for three values of the matrix
sizeN. In the plot on the right-hand side, the data points represent the eigenvalues of the correlation matrix
(3.2) obtained from the staggered lattice Dirac operator (5.1) for three values of the lattice sizeV = L4. In
both plots, the straight lines are the analytical prediction (3.3).

4. Chiral GUE

We first present numerical results for the chiral Gaussian unitary ensemble (GUE) of RMT,
i.e., the random matrix model of Eq. (2.1). We setν = 0 andΣ = 1 and generated three ensembles
of 1000 configurations each forN = 100, 500, and 1000, respectively. The eigenvalue spectra were
unfolded using the numerically determined staircase function for each ensemble, as described in
Sec. 3. We then constructed the correlation matrix of Eq. (3.2) from the unfolded eigenvalues.
The eigenvalues of this matrix are plotted on the left-hand side of Fig. 1, alongwith the analytical
prediction of Eq. (3.3). We observe excellent agreement for smallk and deviations for largek.
These deviations are due to limited statistics. Increasing the number of configurations improves
the agreement between data and analytical prediction, and infinite statistics would result in perfect
agreement.

5. Lattice QCD

We have computed eigenvalue spectra of the unimproved staggered Dirac operator,

/D =
1
2a

4

∑
µ=1

αµ(x)
[

δy,x+µ̂Uµ(x)−δy,x−µ̂U†
µ(y)

]

, (5.1)

wherea is the lattice spacing andUµ(x) and αµ(x) denote the link variables and the staggered
phases, respectively. The gauge action is the standard Wilson plaquette action. In our simulation
we have used lattice volumesV = 44, 64 and 84 at β = 5.6 with 7000 configurations each. The
number of distinct positive eigenvalues ofi /D on a lattice withV sites isN = 3V/2.

The unimproved staggered Dirac operator does not have exact zero modes at finite lattice
spacing even if the gauge field has nontrivial topological charge. At thevalue of β = 5.6, the
O(a2) shift of the would-be zero modes is so large that they are completely mixed up with the
nonzero modes. As a result, the eigenvalue spectrum is effectively in theν = 0 sector. This is
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Figure 2: On the left-hand side, we show the ratio of the lattice data for αk and the corresponding RMT
predictionαRMT

k plotted vsk. On the right-hand side, we show the same ratio but now plotted vsk/
√

V .

a well known problem with a long history [11, 12], and recent studies have shown that it can be
alleviated by various improvement and smearing schemes [13, 14, 15, 16].In our present work, we
are not concerned with this issue since the RMT prediction of Eq. (3.3) does not depend onν .

The numerically obtained eigenvalue ensembles were unfolded and the correlation matrixD
was constructed and diagonalized as in Sec. 4. In the plot on the right-hand side of Fig. 1, we show
the eigenvalues ofD as a function ofk along with the analytical RMT prediction. As in the case
of the chiral GUE, we again observe characteristic deviations for largek that are due to limited
statistics. What is more interesting, however, are the deviations between latticedata and RMT for
smallk. These deviations, which indicate a genuine breakdown of RMT, will now be investigated
in more detail.

6. Thouless energy

In Fig. 2 we show the same data as in the plot on the right-hand side of Fig. 1, but we now
plot the ratio of the lattice data forαk and the corresponding RMT prediction (withN = 3V/2). In
the plot on the left-hand side we magnified the region of smallk. As the wave numberk decreases,
there is a “critical” valuekc at which the lattice data start to deviate from RMT. We see that this
critical value increases withV . In the plot on the right-hand side of Fig. 2, we rescaledk → k/

√
V .

We see that the three rescaled curves nicely fall on top of each other andstart to deviate from RMT
at the same value ofk/

√
V (the deviations for largek are due to limited statistics as explained

above). This means thatkc scales with
√

V as expected [4, 5]. It reflects the fact that the spectral
correlations of the Dirac operator are described by RMT only in theε-regime of QCD in which the
zero-momentum modes of the Goldstone fields dominate the partition function [6].The boundary
of this regime, which in analogy to a similar situation in condensed matter physics is called the
Thouless energyEc [7], scales asEc/∆ ∼

√
V , where∆ is the mean level spacing of the Dirac

operator at zero virtuality [17]. Clearly,kc andEc are intimately related, but we currently do not
know the precise relationship between these two quantities. Once such a relationship is established,
the deviations of the lattice data forαk from the RMT prediction will provide another method to
estimate the Thouless energy in lattice QCD.
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7. Conclusions

We have shown that the normal mode spectrum of the lattice Dirac operator is described by
the analytical prediction of RMT for wave numbersk larger than a critical wave numberkc. This
critical wave number scales with

√
V and is related to the boundary of theε-regime of QCD. In

future work, it would be desirable to find a precise relationship betweenkc and the Thouless energy
Ec. To this end, we plan to investigate the dependence ofkc on the lattice couplingβ .
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