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1. Introduction

Random matrix theory (RMT) is a useful tool to analyze a wide variety of dexngystems,
see, e.g., the review§| [[l, 2]. It can be used as a model to explain ceu@litative aspects of
physical systems, but it also provides model-independent analyticaisésr universal properties
of eigenvalue spectra. Here, we focus on the latter application of RM@&. daries of papers
[B. B, Bl, Jackson and coworkers investigated the normal modes ofighavalue spectrum of
various random matrix ensembles. These normal modes describe carifitliateations of the
eigenvalues about their most probable values. They offer an independy of understanding
spectral correlations and serve as a complementary tool in the analysispofcal eigenvalue
spectra. In Ref[]5] it was suggested to subject the Dirac operatoiticEl®CD to a normal-mode
analysis. Such an analysis is the main subject of the present paper.alieeghthat our results
agree with the expectations of Rd]. [5]: most of the normal modes areliedbdy RMT, but there
are deviations from the random matrix result for normal modes with long leragths. The scale
at which these deviations start to occur are related to the boundary efréggme of QCD[p]. In
condensed matter physics, a related scale is known as the Thouless[@herg

2. Normal modesin chiral random matrix theory

Chiral RMT is obtained by retaining the chiral structure of the QCD DiracatpeD and
replacing its matrix elements by random numbgrs [8],

0 iw
o (5 o

We restrict ourselves to the physical case of gauge group SU(3)eamibhs in the fundamental
representation in whichV is a complex matrix of dimensioN x (N +v) [f]. The matrix in
Eqg. (2.1) hagv| eigenvalues equal to zero, thuscan be interpreted as the topological charge.
Without loss of generality, we take > 0.

The nonzero eigenvalues @ come in pairstA¢ (k=1,...,N). We are interested in the
joint probability distributionPy (A4, ...,An) of the eigenvaluedy. For the probability distribu-
tion of the elements AV we choose a Gaussian, éxpNZ?trWWT), and an additional factor of
n';';l det(D + m; ) which corresponds to the fermion determinant duldlavors with masses.

In the following, we only consider massless flavors. The paraniatienotes the absolute value of
the chiral condensate. After a singular value decompositidi,dahe joint probability distribution
becomes

N
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where_#" is a normalization constant adds the Vandermonde determinaftx) = [T (X —X;).
We see from Eq.[(32) thd; andv only occur in the combinatioN; + v, i.e., a massless flavor
can be traded for one unit of topological charge. We can therefod;se 0 and only retairv.
For further reference, we note that the global spectral density obtidom matrix mode[(3.1) is
given by the Wigner semicircl@(A) = (2NZ/m)(1— (24 /2)%) Y2,
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We assume that thi are ordered with & A1 < ... < AN. The most probable locations of the
eigenvalues are given by the maximaRf These are obtained when the eigenvalues are located at
the zeros of Laguerre polynomials, see Rigf. [5] for details. Sde symmetric in its arguments,
it suffices to consider a single maximum, denotedD,@yNear this maximum, the logarithm &%
can be approximated by

1
IRy~ InPY+ =S SAiCij 04 (2.3)
N 2% 1~ ]

with a real symmetric matri€ given in Ref. [b]. The eigenvalues of this matrix are
W = —4kNZ? (2.4)

with k= 1,...,N. Note that thew, are independent of. The eigenvectorg® of C, whose
explicit form can be found in Ref[][5], are the normal modes of the ramdmtrix spectrum. They
are statistically independent and describe correlated fluctuations of #revaiges about their most
probable values. The eigenvalugsmeasure the magnitude of these fluctuations. The main focus
of the present paper is a comparison of the normal mode spectrum of the Ritéc operator with

the analytical resul{ (2 4), and the interpretation of deviations from thistres

3. Unfolding and normal modesin empirical spectra

In Secs[}# anfl] 5 we will present ensembles of numerical eigenvalugapbtained in RMT
and in lattice QCD, respectively. In order to compare these data to ualieralytical predictions
of RMT, the dependence of the global level dengpityn system-specific details must be eliminated.
This is done by an unfolding procedure in which the energiese rescaled according to

E
E— &(E) = [wdE’p(E’) . (3.1)

By construction, the mean level spacing or, equivalently, the mean lemsltgeof the unfolded
energiest is equal to unity. The quantity on the right-hand side of Eq] (3.1) is callectéirease
function. There are two different methods of determingig ), known as spectral averaging and
ensemble averaging, respectively. They can potentially lead to diffe¥suits because they probe
different energy scales of the spectra. For the present applicatmnathral choice is ensemble
averaging, see Refg][4,]10] for details.

After unfolding, a single spectrum consistsMfeigenvalues, ..., xy with (x;) =i, where
(---) denotes an ensemble average. To investigate the normal mode spectrung flecttfations
of the eigenvalues about their average positions, we construct thangaymmetric correlation
matrix [3]

Dij = (% — () (x5 — (3))) = (6x3) — () () (3.2)
whose eigenvalues will be denoted tay.

Within RMT, the matricesC and D are related. If the small-amplitude approximation in
Eqg. (2.B) holds, the eigenvectors GfandD are identical, and the eigenvalues@fandC are
related byafMT = — 1/, wheredy is the dispersion relation of the normal modes on the unfol-
ded scale. The latter is obtained by rescaling Eq} (2.4) with a numericat fittoesulting in

1 N
afMT — — — (3.3)
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Figure 1: The data points in the plot on the left-hand side representidenvalues of the correlation matrix
(@) obtained from a numerical simulation of the randomrimahodel ) for three values of the matrix
sizeN. In the plot on the right-hand side, the data points repitebereigenvalues of the correlation matrix
(@) obtained from the staggered lattice Dirac oper@)(ﬁ)r three values of the lattice sixe= L%. In
both plots, the straight lines are the analytical predic@).

4. Chiral GUE

We first present numerical results for the chiral Gaussian unitaryne@sieg GUE) of RMT,
i.e., the random matrix model of Eq. (R.1). We set 0 andX = 1 and generated three ensembles
of 1000 configurations each for= 100, 500, and 1000, respectively. The eigenvalue spectra were
unfolded using the numerically determined staircase function for eacimbieseas described in
Sec.[B. We then constructed the correlation matrix of Eq] (3.2) from thelded eigenvalues.
The eigenvalues of this matrix are plotted on the left-hand side ofFig. 1, alithghe analytical
prediction of Eq. [(3]3). We observe excellent agreement for sknatld deviations for largé.
These deviations are due to limited statistics. Increasing the number of qaitifigng improves
the agreement between data and analytical prediction, and infinite statistitsnesult in perfect
agreement.

5. Lattice QCD

We have computed eigenvalue spectra of the unimproved staggered paratar,

4
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wherea is the lattice spacing and,(x) and ay(x) denote the link variables and the staggered
phases, respectively. The gauge action is the standard Wilson plaqutéite @n our simulation
we have used lattice volum&s= 4% 6* and & at 3 = 5.6 with 7000 configurations each. The
number of distinct positive eigenvaluesi@f on a lattice withv sites isN = 3V /2.

The unimproved staggered Dirac operator does not have exact zetesmat finite lattice
spacing even if the gauge field has nontrivial topological charge. Avdéhee of 3 = 5.6, the
¢ (@?) shift of the would-be zero modes is so large that they are completely mixedtighe
nonzero modes. As a result, the eigenvalue spectrum is effectively in £h@ sector. This is
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Figure 2: On the left-hand side, we show the ratio of the lattice dateofoand the corresponding RMT
predictionafMT plotted vsk. On the right-hand side, we show the same ratio but now plotsd//V.

a well known problem with a long history JlLL,]12], and recent studie® Isfnown that it can be
alleviated by various improvement and smearing schemg§ LB, |1[4) 13n Bir present work, we
are not concerned with this issue since the RMT prediction of[Ed. (3.3) nimtedepend om.

The numerically obtained eigenvalue ensembles were unfolded and tlieéatorr matrixD
was constructed and diagonalized as in fec. 4. In the plot on the rigtitsidenof Fig[]L, we show
the eigenvalues dD as a function ok along with the analytical RMT prediction. As in the case
of the chiral GUE, we again observe characteristic deviations for kathat are due to limited
statistics. What is more interesting, however, are the deviations between dttéicand RMT for
smallk. These deviations, which indicate a genuine breakdown of RMT, will newnestigated
in more detail.

6. Thoulessenergy

In Fig. 2 we show the same data as in the plot on the right-hand side df] Figt tyebnow
plot the ratio of the lattice data fars and the corresponding RMT prediction (with= 3V /2). In
the plot on the left-hand side we magnified the region of sknalls the wave numbet decreases,
there is a “critical” values; at which the lattice data start to deviate from RMT. We see that this
critical value increases witii. In the plot on the right-hand side of F@;. 2, we resced k/\N.
We see that the three rescaled curves nicely fall on top of each othstaahtb deviate from RMT
at the same value d€/+/V (the deviations for largé are due to limited statistics as explained
above). This means thit scales withy/V as expected 4] 5]. It reflects the fact that the spectral
correlations of the Dirac operator are described by RMT only irethegime of QCD in which the
zero-momentum modes of the Goldstone fields dominate the partition fungtioft{élboundary
of this regime, which in analogy to a similar situation in condensed matter physiedles the
Thouless energ¥. [[], scales a€./A ~ +/V, whereA is the mean level spacing of the Dirac
operator at zero virtualityf [17]. Clearli. andEc are intimately related, but we currently do not
know the precise relationship between these two quantities. Once suctianstig is established,
the deviations of the lattice data fog from the RMT prediction will provide another method to
estimate the Thouless energy in lattice QCD.
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7. Conclusions

We have shown that the normal mode spectrum of the lattice Dirac operatesdstied by
the analytical prediction of RMT for wave numbdcgarger than a critical wave numbkyg. This
critical wave number scales wittiV and is related to the boundary of teaegime of QCD. In
future work, it would be desirable to find a precise relationship betwgand the Thouless energy
Ec. To this end, we plan to investigate the dependendg oh the lattice coupling.
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