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The properties of the φ 4 scalar field theory on a fuzzy sphere are studied numerically. The fuzzy
sphere is a discretization of the sphere through matrices in which the symmetries of the space are
preserved. This model presents three different phases: uniform and disordered phases, as in the
usual commutative scalar field theory, and a non-uniform ordered phase related to UV-IR mixing
like non-commutative effects. We have determined the coexistence lines between phases, their
triple point and their scaling.
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1. Introduction

The fuzzy approximation scheme [1] consists in approximating the algebra of functions on a
manifold with a finite dimensional matrix algebra instead of discretising the underlying space as a
lattice approximation does.

Here we report our results for a hermitian scalar field on the fuzzy sphere. We find the col-
lapsed phase diagram and in particular we calculate the uniform ordered/non-uniform ordered line
that was absent in [2].

The current study could be relatively easily repeated for a hermitian scalar field on other fuzzy
spaces. The simplest extension would be to fuzzy CP

N. Some variants of the scheme can be applied
to fuzzy versions of S3 and S4[3]. The study reveals that the non-uniform disordered phase lines
should correspond to a pure matrix model transition.

As an approximation scheme, this “fuzzification” is well suited to numerical simulations of
field theories [4]. As a test run, the first fuzzy approximation to be investigated should be the
simplest one, that of the two dimensional sphere CP

1 = S2. Both the two–dimensional commutative
and Moyal planes can be viewed as the limits of a fuzzy sphere of infinite radius.

2. The two dimensional φ 4 Model and its fuzzy version

We are interested in the model:

S[Φ] = Tr
[

aΦ† [Li, [Li,Φ]]+bΦ2 + cΦ4] , (2.1)

where Φ is a Hermitian matrix of size N, b and c are mass and coupling parameters respectively.
Li is the angular momentum generator in the N dimensional unitary irreducible representation of
SU(2). Since a rescaling of Φ will allow us to set a = 1, the entire phase diagram can be explored
by ranging through all real values of b and positive values of c. The conventions of [2] are a = 4π

N ,
b = arR2, c = aλR2.

The infinite matrix limit of the model can be taken and corresponds to a real scalar field φ on
a round sphere of radius R and Euclidean action

S[φ ] =
∫

S2
d2n

(

φL
2φ + rR2φ 2 +λR2φ 4) (2.2)

where L 2 = ∑i=1,3 L 2
i and Li are the usual angular momentum generators.

The eigenvectors of [Li, [Li, ·]] in (2.1) are the polarization tensors Ŷlm (normalised so that
4π
N Tr(Ŷ †

lmŶlm) = 1) and it has eigenvalues l(l + 1) with degeneracy 2l + 1. This is precisely the
spectrum of the Laplacian L 2 on the commutative sphere truncated at angular momentum N −1.

This particular model was chosen because of its simplicity. The diagrammatic expansion of the
model (2.2) has only one divergent diagram, the tadpole diagram, is Borel resumable, and defines
the field theory entirely. In the fuzzy version, the tadpole splits into planar and non-planar tadpoles,
which are also the only diagrams that diverge in the infinite N limit. Their difference is finite and
nonlocal and is responsible for the UV/IR mixing phenomena of the disordered phase [6].

Even though the scalar field on either commutative or fuzzy spheres cannot have a phase
transition, since they have finite volume or a finite number of degrees of freedom, phase transitions
may be found when the matrix dimension or the radius of the sphere become infinite.
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The fuzzy sphere can be recognized by introducing coordinates (X1,X2,X3) proportional to the
angular momentum operators

Xi =
2R√

N2 −1
Li.

They must satisfy the algebra

X2
1 +X2

2 +X2
3 = R21, [Xi,X j] = iΘεi jkXk

where Θ = 2R√
N2−1

is the parameter of non-commutativity, R is the radius of the sphere and 1 is the
unit operator. The non-commutativity parameter depends on the matrix size, N, and the radius of
the sphere, R. By taking different limits we can access different spaces:

N R Θ Limit
N 1

2 θ
√

N2 −1 θ Fuzzy Sphere
∞ constant = R 0 Commutative Sphere
∞ ∞ 0 Commutative plane
∞ ∞ constant = θ Moyal Plane

2.1 Order parameters

A suitable set of order parameters can be identified from the coefficients of a mode decompo-
sition in terms of the polarization tensors basis [5]

Φ = Tr(Φ)
1
N

+

√

12
N2 −1

ρaLa +
N−1

∑
l=2

+l

∑
m=−l

clmŶlm. (2.3)

We have separated explicitly l = 0 and l = 1 from the expansion to identify two observables whose
expectation values we used to identify the respective phases. The observables are |Tr(Φ)| and

ρ :=

√

3

∑
a=1

Tr((LaΦ)2). The total power in all coefficients is given by Tr(Φ2) = 1
N (Tr(Φ))2 +

ρ2 + N
4π

N−1

∑
l=2

l

∑
m=−l

|clm|2 and can be used to estimate the importance of the neglected higher modes.

2.2 The phases

This model (2.1) presents three phases. As a generic illustration of their properties, Fig. 1(a)
and Fig.1(b) show the dependence on the mass parameter b of the probability distributions of Tr(Φ)

and ρ , respectively, for {a = 1, c = 40, N = 4}.
Disordered: Found for |b| “small”, the configurations fluctuate close to Φ = 0. This is con-

firmed on the figure, < |Tr(Φ)| > /N ∼< ρ >∼ 0, but also < Tr(Φ2) >∼ 0 (not shown).
Non-uniform ordered: As |b| increases, the figure shows multiple symmetric peaks for the

probability distribution of Tr(Φ) whose height decreases with increasing |Tr(Φ)|, and multiple
peaks not centered near zero for ρ . Furthermore Tr(Φ2) is much larger than both <|Tr(Φ)|>2

N and
< ρ > so that higher modes actually dominate. In particular, the most probable configuration is not
rotationally invariant and we have spontaneous breakdown of rotational invariance. The probability
distribution of Tr(Φ) has N +1 symmetric peaks located approximately at (N−2k)

√

−b/2c where
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k = 0,1, . . . ,N, while the probability distributions of ρ and S[Φ] have (N + 1)/2 peaks for N odd
and N/2+1 for N even.

Uniform ordered: As |b| becomes large, the figure shows two symmetric peaks for the prob-
ability distribution of Tr(Φ) corresponding to the outer peaks of the non-uniform ordered phase
and located approximately at Tr(Φ) ∼ ±N

√

−b/2c, but just one peak near zero for ρ . Further-
more, < Tr(Φ2) >∼< Tr(Φ) >2 /N indicating that the power in higher modes is negligible. This
is generic and indicates that Φ ∼

√

−b/2c1 and the rotational symmetry is thus restored.
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Figure 1: Figures (a) and (b) show the typical behavior of the observables Tr(Φ) and ρ in a region of the
phase diagram where decreasing b passes the system through the three phases.

3. Simulation and Results: The specific heat and the phase diagram

We are interested in the phase diagram of the model (2.1). To identify it, we used the coordi-
nates in parameter space of the peaks of the specific heat, C :=< S2 > − < S >2. The relevant set
of parameters is {N,b,c} where b and c depend implicitly in R. It is possible to further reduce by
one the number of parameters by finding a scaling {b,c} →

{

bNθb ,cNθc
}

. If we find such θb and
θc, the model becomes independent of N and automatically yields an infinite matrix limit.

The simulations show that in the non–uniform ordered phase, the fuzzy kinetic term, is neg-
ligible compared to the potential term. There exists an exact solution for the corresponding limit
of a = 0 in the large N limit called the pure potential model [7]. This model predicts a third order
phase transition between a disordered and non–uniform ordered phase at c = b2/4N. Figure 2 con-
firms numerically the convergence of the disordered/non–uniform ordered transition towards this
exact critical line of the pure potential model.

Numerically, it is not difficult to find the coexistence curve between the uniform ordered and
disordered phases which exist for low values of c. On the other hand, the coexistence curve between
the two ordered phases is difficult to evaluate because it involves a jump in the field configuration
and tunneling over a wide potential barrier.
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Figure 2: Plot of the specific heat at the disordered/non–uniform ordered transition for increasing N and its
N → ∞ limit, the exact pure potential model.
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Figure 3: Phase diagram obtained from Monte–Carlo simulations of the model (2.1)

The phase diagram obtained by Monte Carlo simulations with the Metropolis algorithm is
shown on figure 3. That plot shows the phase diagram for the model (2.1). The data have been
collapsed using the scaling form defined above with θb = −3/2 and θc = −2. It is remarkable that
this scaling also works for the exact solution of the pure model potential.
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4. Conclusions

The numerical study showed three different phases. In one of those phases, which does not
exist in the commutative planar λφ 4 theory, the rotational symmetry is spontaneously broken. The
other two phases have qualitatively the same character as the phases of this latter model. The three
coexistence curves intersect at a triple point given by

(bT ,cT ) = (−0.15N3/2,0.8N2). (4.1)

Those three curves and the triple point collapse using the same scaling function of N and thus
give a consistent N → ∞ limit. Thus, all three phases, and in particular the new uniform disordered
phase, and the triple point survive in the limit. We will discuss these issues more completely in
Ref. [8].
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