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We present results of numerical simulations for pureU(1) gauge theory in a non-commutative

space. The theory is mapped onto a dimensionally reduced matrix model, which renders its nu-

merical treatment feasible. New data on large lattices reveal the scaling of Wilson loops and their

correlation functions in the simultaneous limit to the continuum and to infinite volume, at fixed

non-commutativity. In this on-going project we are particularly interested in the IR behaviour, the

“photo-ball” spectrum and in the photon dispersion relation.
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1. Non-commutative U(1) gauge theory

Somewhat overshadowed by the celebrations for Einstein’s works of 1905, we are also cele-
brating this year the 200th anniversary of Sir William Rowan Hamilton [1], particularly here in Ire-
land. One of his achievements was the discovery of quaternions in 1843: he had thought for a long
time about possibilities to extend the representation of complex numbers by two real components
to a system with three real components, until he noticed that he had to proceed to four components
to arrive at a sensible system — the firstnon-commutative(NC) algebra that was studied.

In the 20th century, the concept of non-commutativity for space coordinates and momenta
became standard in quantum physics, but also the idea of NC space coordinates is about 60 years
old [2]. It experienced a powerful renaissance in 1998, triggered by the identification of open
strings at low energy with NC field theory [3]. NC spaces are also considered a promising approach
to quantum gravity [4]. On the phenomenological side, it might for instance explain the observation
of high energy photons from far away galaxies, beyond the energy threshold apparently predicted
by the Standard Model [5]. Here we study NC gauge theory in its own right.

In that framework, quantum mechanical position operators obey a commutation relation of the
form [x̂µ , x̂ν ] = iΘµν , where we assume the non-commutativity tensorΘ to be constant in (Eu-
clidean) space-time. More precisely, we consider the case of two commutative directions (which
include the Euclidean time), and an NC plane with the relation[x̂i , x̂ j ] = iθεi j (i, j ∈ {1,2}).

Field theory on such a space can be written in terms of our usual (commutative) coordinatesx,
if all field multiplications are performed bystar products,

φ(x)?ψ(x) := φ(x) exp
( 1

2
←∂ i θ εi j

→∂ j

)

ψ(x) . (1.1)

In particular, the action of pureU(1) gauge theory takes the form

S[A] =
1

4g2

∫

d4x Tr [Fµν ?Fµν ] , Fµν = ∂µAν −∂νAµ + i[Aµ ?Aν −Aν ?Aµ ] , (1.2)

which is star-gauge invariant. The Yang-Mills type self-interaction term is expected to yield a
“photo-ball” spectrum [6]1. It may modify the photon dispersion relation at low energy, as it was
observed non-perturbatively in the NCλφ4 model [7], as a consequence of UV/IR mixing effects
[8]. These effects drastically complicate the perturbative treatment. However, theβ function could
be computed, suggesting asymptotic freedom [9]. There are a number of further perturbative [10]
and semi-classical [11] studies.

A formulation on a (fuzzy) lattice is possible [12], and it relates the spacinga on aN×N
lattice to the NC parameter as

θ =
1
π

Na2 . (1.3)

Then theDouble Scaling Limit(DSL), which takes simultaneouslyN→ ∞ and a→ 0 at θ =

const. , leads to a continuous NC plane of infinite extent.

1The term “photo-ball” is an obvious analogue to the glueball; to our knowledge, it first occurred in the work by
Fatollahi and Jafari quoted in Ref. [6].
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But such a formulation is not immediately applicable for simulations, in particular because of
the request for star-unitary link variables. However, there is an exactmap [13] of the NCN×N
lattice onto the dimensionally reduced Twisted Eguchi-Kawai model [14] with theaction

S[U ] =−βN∑
i 6= j

Zi j Tr [UiU jU
†
i U†

j ] , Z12 = Z
∗

21 = exp{π i(N+1)/N} , N odd, (1.4)

whereUi ∈U(N), i = 1,2. The (analogue of a) rectangular Wilson loop of sidesaI andaJ is now
given by

Wi j (I ×J) =
1
N

Z
IJ

i j Tr
(

U I
i U

J
j U

†I
i U†J

j

)

. (1.5)

Mapping this quantity back to the lattice yields in fact a sensible definition of a Wilson loop in the
NC gauge theory [15]. Note that NC Wilson loops are star-gauge invariant and complex.

2. Numerical results for the Double Scaling behaviour

This mapping of the NC plane onto a matrix model (one in each lattice site of the commutative
plane) enables numerical simulations. The next challenge is to identify the dimensional lattice
spacinga(β ) in order to evaluate observables in the DSL. The simple ansatz

a ∝ 1/β (2.1)

turned out to be successful, as we are going to illustrate in a sequence of plots. Along with relation
(1.3) it impliesN/β 2 = const. 2 We always deal withN2× (N±1)2 lattices, whereN2 ( (N±1)2 )
is the lattice size in the NC (in the commutative) plane, and the NC plane is mapped ontoa twisted
Eguchi-Kawai model. We present results atN = 45, 55, 65, 71 and 81, and the correspondingβ
values are fixed such thatN/β 2 ≡ 20 in all cases.3 This means that we are always in the weak
coupling phase [14, 16].

Figure 1 (on the left) shows the real part of the Wilson loop in the NC plane asa function of
the loop area. We see that the loops of the same areaI2a2 reveal a convincing Double Scaling, if
we insert the ansatz (2.1) (we chose the proportionality constant= 1). The same is true for the
phase of these Wilson loops, as the plot on the right-hand-side of Figure 1shows. Qualitatively this
behaviour is similar to the Wilson loops in 2d NC QED [17]: small loops are almost real and decay
exponentially as the area increases. On the other hand, for large loops the real part oscillates around
zero, and the phase grows linearly. The latter property is reminiscent of the Aharonov-Bohm effect,
if one identifiesθ with an inverse magnetic field across the NC plane, as suggested by Peierls [18].

Next we consider correlation functions of Wilson loops, which are locatedin the NC plane but
separated in the (commutative) Euclidean time. As examples, we show the correlation of the real
parts of 4×4 loops (on the left), and of the phases of 2×2 loops (on the right). In both cases we
still observe a decent Double Scaling. Its quality improves asN in increases, which indicates that
our simple ansatz (2.1) does indeed describe the DSL limit asymptotically.

2In contrast, ind = 2 we had to seta ∝ 1/β 2, and thereforeN/β = const. [17].
3We are also working on a systematic search for Double Scaling by matchingthe data without any assumption about

the relation betweenβ anda. This represents a completely unbiased test of the DSL postulated here.
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Figure 1: The Wilson loop in the NC plane: its real part (on the left) decays at small area, and for larger
areas it oscillates around zero. In that regime, the complexphase (on the right) turns sizeable and it begins
to grow in an (approximately) linear way.
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Figure 2: The correlation of Wilson loops in the NC plane, separated bya distancea∆t in Euclidean time.
Our examples are the correlation the real parts of 4×4 Wilson loops (on the left), and of the phases of 2×2
loops (on the right).

Finally we also consider Wilson loops in the commutative plane. These loops, aswell as those
in the mixed planes, are real due to the reflection symmetry on the commutative axes. From Figure
3 (on the left) we see that for loops in this plane the convergence towards the DSL is a little more
laborious, but for our largestN values it sets in also here. On the right-hand-side of this Figure
we also consider the correlator of 6× 6 loops in the commutative plane, again separated in the
Euclidean time, which confirms the above statement with respect to the DSL.

3. Conclusions and outlook

We reported on our progress in a numerical investigation of pureU(1) gauge theory in a NC
space-time. In particular, we presented results which reveal the asymptoticrule for the Double
Scaling, which takes the system to the continuum and to the infinite volume at the same time;
the entanglement of these limits can be viewed in the light of the notorious UV/IR mixing. We
observed that the simple ansatz (2.1) for the lattice spacing works in a satisfactory way.

Hence the bases is now provided to study the observables of physical interest and extrapolate
them to the DSL. In particular, the Wilson loop correlators — examples are shown in Figure 2
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Figure 3: The Wilson loop in the commutative plane: the plot on the leftdepicts the loops themselves (they
are real) against the dimensional area. On the right we show the correlation of 6× 6 loops, separated in
Euclidean time.

— provide the bases for the evaluation of the “photo-ball spectrum”. We also hope to obtain
results for the NC distortion of the photon dispersion relation, which could then be confronted
with experimental data. Several high precision experiments dealing with cosmicrays are about
to measure the photon dispersion to a very high accuracy, over a broad range of energies (see for
instance Ref. [19]).

While our results suggest the existence of a finite continuum theory, we notethat perturbative
calculations revealed an infrared instability of the trivial vacuum [20] (aslong as the model is not
rendered supersymmetric). Indeed, we do observe numerically that the open Polyakov lines (which
are star-gauge invariant as well) acquire non-zero expectation values, in accordance with perturba-
tion theory. We therefore consider that we are actually probing a stable vacuum, which might be
obtained after the condensation of “tachyons” in the trivial vacuum. This issue shall be discussed
in a forth-coming paper.

Acknowledgements Frank Hofheinz has contributed to this work in an early stage, and Hinnerk Stüben has

given us helpful advice regarding the parallelisation of our code. We also thank Antonio Bigarini, Chong-

Sun Chu, Harald Grosse, Esperanza Lopez, Carmelo Perez Martin, Stam Nicolis, Denjoe O’Connor, Andrzej

Sitarz, Richard Szabo and Alessandro Torielli for stimulating discussions. We are grateful for support by the

“Deutsche Forschungsgemeinschaft” (DFG). Most computations were performed on the IBM p690 clusters

of the “Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen” (HLRN).

References

[1] L. Drury, Hamilton – the man and the mathematics, to appear in these Proc.

[2] H.S. Snyder,Phys. Rev.71 (1947) 38. C.N. Yang,Phys. Rev.72 (1947) 874.

[3] N. Seiberg and E. Witten,JHEP9909 (1999) 032 [hep-th/9908142].

[4] S. Doplicher, K. Fredenhagen and J.E. Roberts,Phys. Lett.B 331 39; Commun. Math. Phys.172
(1995) 187 [hep-th/0303037].

[5] G.T. Zatsepin and V.A. Kuzmin,JETP Lett.4 (1966) 78. K. Greisen,Phys. Rev. Lett.16 (1966) 748.
F.W. Stecker and O.C. De Jager,Astrophys. J.415 (1993) L71. M. Takeda et al.,Astrophys. J.522

264 / 5



P
o
S
(
L
A
T
2
0
0
5
)
2
6
4

Scaling of non-commutative QED Jan Volkholz

(1999) 225 [astro-ph/9902239]. F. Aharonian et al. (HEGRA Collaboration),
astro-ph/0202072.

[6] M. Hayakawa,Phys. Lett.B 478 (2000) 394 [hep-th/9912094]. A. Matusis, L. Susskind and N.
Toumbas,JHEP12 (2000) 2 [hep-th/0002075]. F. Ruiz Ruiz,Phys. Lett.B 502 (2001) 274
[hep-th/0012171]. A.H. Fatollahi and A. Jafari,hep-th/0503078.

[7] W. Bietenholz, F. Hofheinz and J. Nishimura,JHEP0406 (2004) 042 [hep-th/0404020]. F.
Hofheinz, Ph.D thesis (Berlin, 2003) [hep-th/0403117]. A. Bigarini, Ph.D. thesis, in preparation.

[8] S.S. Gubser and S.L. Sondhi,Nucl. Phys.B 605 (2001) 395 [hep-th/0006119]. G.-H. Chen and
Y.-S. Wu,Nucl. Phys.B 622 (2002) 189 [hep-th/0110134]. J. Ambjørn and S. Catterall,Phys.
Lett.B 549 (2002) 253 [hep-lat/0209106]. P. Castorina and D. Zappalà,Phys. Rev.D 68 (2003)
065008 [hep-th/0303030]. W. Bietenholz, F. Hofheinz and J. Nishimura,JHEP0405 (2004) 047
[hep-th/0404179].

[9] C.P. Martin and D. Sánchez-Ruiz,Phys. Rev. Lett.83 (1999) 476 [hep-th/9903077]. T. Krajewski
and R. Wulkenhaar,Int. J. Mod. Phys.A 15 (2000) 1011 [hep-th/9903187].

[10] A. Bassetto, G. Nardelli and A. Torrielli,Nucl. Phys.B 617 (2001) 308 [hep-th/0107147]; Phys.
Rev.D 66 (2002) 085012 [hep-th/0205210]. A. Bassetto, G. De Pol and F. Vian,JHEP0306
(2003) 051 [hep-th/0306017]. J. Ambjørn, A. Dubin and Y.M. Makeenko,JHEP0407 (2004)
044 [hep-th/0406187].

[11] L. Griguolo, D. Seminara and P. Valtancoli,JHEP0112 (2001) 024 [hep-th/0110293]. L.D.
Paniak and R.J. Szabo,Commun. Math. Phys.243 (2003) 343 [hep-th/0203166]; JHEP0305
(2003) 029 [hep-th/0302162]. A. Bassetto and F. Vian,JHEP0210 (2002) 004
[hep-th/0207222]. H. Dorn and A. Torrielli,JHEP0401 (2004) 026 [hep-th/0312047].

[12] For a review, see R.J. Szabo,Phys. Rep.378 (2003) 207 [hep-th/0109162].

[13] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada,Nucl. Phys.B 565 (2000) 176.
[hep-th/9908141]. J. Ambjørn, Y.M. Makeenko, J. Nishimura and R.J. Szabo,JHEP9911 (1999)
29 [hep-th/9911041]; Phys. Lett.B 480 (2000) 399 [hep-th/0002158]; JHEP0005 (2000)
023 [hep-th/0004147].

[14] A. González-Arroyo and M. Okawa,Phys. Rev.27 D (1983) 2397.

[15] N. Ishibashi, S. Iso, H. Kawai and Y. Kitazawa,Nucl. Phys.B 573 (2000) 573 [hep-th/9910004].
D.J. Gross, A. Hashimoto and N. Itzhaki,Adv. Theor. Math. Phys.4 (2000) 893
[hep-th/0008075]. A. Dhar and Y. Kitazawa,Nucl. Phys.B 613 (2001) 105
[hep-th/0104021].

[16] W. Bietenholz, F. Hofheinz, J. Nishimura, Y. Susaki andJ. Volkholz,Nucl. Phys. B (Proc. Suppl.)140
(2005) 772 [hep-lat/0409059]. W. Bietenholz, A. Bigarini, F. Hofheinz, J. Nishimura, Y.Susaki
and J. Volkholz,Fortschr. Phys.53 (2005) 418 [hep-th/0501147].

[17] W. Bietenholz, F. Hofheinz and J. Nishimura,JHEP0209 (2002) 9 [hep-th/0203151].

[18] R. Peierls,Z. Phys.80 (1933) 763.

[19] L. Latronico,Nucl. Instrum. Meth.A 511 (2003) 68.

[20] K. Landsteiner, E. Lopez and M.H. Tytgat,JHEP0106 (2001) 055 [hep-th/0104133]. M. van
Raamsdonk,JHEP0111 (2001) 006 [hep-th/0110093]. A. Armoni and E. Lopez,Nucl. Phys.B
632 (2002) 240 [hep-th/0110113]. Z. Guralnik, R.C. Helling, K. Landsteiner and E. Lopez,
JHEP0205 (2002) 025 [hep-th/0204037].

264 / 6


