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We present results of numerical simulations for pure) gauge theory in a non-commutative
space. The theory is mapped onto a dimensionally reducetdxmatdel, which renders its nu-

merical treatment feasible. New data on large latticesaletve scaling of Wilson loops and their
correlation functions in the simultaneous limit to the éontim and to infinite volume, at fixed

non-commutativity. In this on-going project we are paridely interested in the IR behaviour, the
“photo-ball” spectrum and in the photon dispersion relatio
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1. Non-commutative U (1) gauge theory

Somewhat overshadowed by the celebrations for Einstein’s worksQ#, 18e are also cele-
brating this year the 200th anniversary of Sir William Rowan Hamilfpn [1}ipalarly here in Ire-
land. One of his achievements was the discovery of quaternions in 184®idthought for a long
time about possibilities to extend the representation of complex numbers byaiwmormponents
to a system with three real components, until he noticed that he had to grockeerr components
to arrive at a sensible system — the finsin-commutativéNC) algebra that was studied.

In the 20th century, the concept of non-commutativity for space codeirend momenta
became standard in quantum physics, but also the idea of NC spacénatesds about 60 years
old [B]. It experienced a powerful renaissance in 1998, triggesethb identification of open
strings at low energy with NC field theorf} [3]. NC spaces are also coreidepromising approach
to quantum gravity[J4]. On the phenomenological side, it might for instarpkiz the observation
of high energy photons from far away galaxies, beyond the energgttbtd apparently predicted
by the Standard Mod€]][5]. Here we study NC gauge theory in its own right.

In that framework, quantum mechanical position operators obey a comnmuteléion of the
form [X,, %] =iOyy, , where we assume the non-commutativity ter®do be constant in (Eu-
clidean) space-time. More precisely, we consider the case of two comneudatdctions (which
include the Euclidean time), and an NC plane with the relatioi;] =i0sg; (i, ] € {1,2}).

Field theory on such a space can be written in terms of our usual (commytatomlinates,
if all field multiplications are performed bstar products,

000+ 9(x) = o) exp( 5 3168, 7 ) (). 11)

In particular, the action of purd (1) gauge theory takes the form
1 :

which is star-gauge invariant. The Yang-Mills type self-interaction term eeted to yield a
“photo-ball” spectrum[J6f. It may modify the photon dispersion relation at low energy, as it was
observed non-perturbatively in the N@* model 7], as a consequence of UV/IR mixing effects
[B]. These effects drastically complicate the perturbative treatment. Howe function could
be computed, suggesting asymptotic freedfm [9]. There are a numhettafrfperturbative[10]
and semi-classica[ [lL1] studies.

A formulation on a (fuzzy) lattice is possiblf J12], and it relates the spaging aN x N
lattice to the NC parameter as

1
6= I—TNaz. (1.3)

Then theDouble Scaling Limi{DSL), which takes simultaneousIil — c« and a— 0 at 8 =
const , leads to a continuous NC plane of infinite extent.

1The term “photo-ball” is an obvious analogue to the glueball; to our knovelgeitdirst occurred in the work by
Fatollahi and Jafari quoted in Ref] [6].
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But such a formulation is not immediately applicable for simulations, in particulzase of
the request for star-unitary link variables. However, there is an erapt[18] of the NCN x N
lattice onto the dimensionally reduced Twisted Eguchi-Kawai mddél [14] witlactien

S[U]:—BN;%]Tr[UinUiTUjT], Po= 25 =exp{mi(N+1)/N}, N odd, (1.4)
iZ]

whereU; € U(N), i =1,2. The (analogue of a) rectangular Wilson loop of sidkandaJ is now
given by

1
W (1 x3) = < 2 Tr (Ui'ufUiT'uj”) : (1.5)

Mapping this quantity back to the lattice yields in fact a sensible definition of a Witsap in the
NC gauge theory[[15]. Note that NC Wilson loops are star-gauge intaf@hcomplex.

2. Numerical resultsfor the Double Scaling behaviour

This mapping of the NC plane onto a matrix model (one in each lattice site of the cotiv@uta
plane) enables numerical simulations. The next challenge is to identify the slonahlattice
spacinga(f3) in order to evaluate observables in the DSL. The simple ansatz

al1/p (2.1)

turned out to be successful, as we are going to illustrate in a sequenogésofAdong with relation
(3) it impliesN/B? = const 2 We always deal wittN? x (N + 1)? lattices, wheré? ( (N +1)?)

is the lattice size in the NC (in the commutative) plane, and the NC plane is mappeal torisbed
Eguchi-Kawai model. We present resultshat= 45, 55, 65, 71 and 81, and the correspondifig
values are fixed such that/B82 = 20 in all cases? This means that we are always in the weak
coupling phasg 14, 16].

Figure[1 (on the left) shows the real part of the Wilson loop in the NC plarzefasction of
the loop area. We see that the loops of the samelde8aeveal a convincing Double Scaling, if
we insert the ansatf (2.1) (we chose the proportionality constaljt The same is true for the
phase of these Wilson loops, as the plot on the right-hand-side of Figinans. Qualitatively this
behaviour is similar to the Wilson loops in 2d NC QED][17]: small loops are alneastand decay
exponentially as the area increases. On the other hand, for large leapsitipart oscillates around
zero, and the phase grows linearly. The latter property is reminiscerd gftthronov-Bohm effect,
if one identifiesd with an inverse magnetic field across the NC plane, as suggested by Hedérls [

Next we consider correlation functions of Wilson loops, which are lociatéte NC plane but
separated in the (commutative) Euclidean time. As examples, we show thiatiorref the real
parts of 4x 4 loops (on the left), and of the phases of 2 loops (on the right). In both cases we
still observe a decent Double Scaling. Its quality improvebl &s increases, which indicates that
our simple ansat (3.1) does indeed describe the DSL limit asymptotically.

2In contrast, ind = 2 we had to sea [ 1/2, and therefordN/B = const [L7].
3We are also working on a systematic search for Double Scaling by matittemi;ta without any assumption about
the relation betweefi anda. This represents a completely unbiased test of the DSL postulated here.
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Figure 1: The Wilson loop in the NC plane: its real part (on the left) @alecat small area, and for larger
areas it oscillates around zero. In that regime, the compi@se (on the right) turns sizeable and it begins
to grow in an (approximately) linear way.
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Figure 2: The correlation of Wilson loops in the NC plane, separated bjstanceaAt in Euclidean time.
Our examples are the correlation the real parts »#Wilson loops (on the left), and of the phases of 2
loops (on the right).

Finally we also consider Wilson loops in the commutative plane. These loop®lless those
in the mixed planes, are real due to the reflection symmetry on the commutatsueé=a@m Figure
(on the left) we see that for loops in this plane the convergence toward3®Sh is a little more
laborious, but for our largedt values it sets in also here. On the right-hand-side of this Figure
we also consider the correlator of<8 loops in the commutative plane, again separated in the
Euclidean time, which confirms the above statement with respect to the DSL.

3. Conclusions and outlook

We reported on our progress in a numerical investigation of pife gauge theory in a NC
space-time. In particular, we presented results which reveal the asympiletifor the Double
Scaling, which takes the system to the continuum and to the infinite volume atrtteetsae;
the entanglement of these limits can be viewed in the light of the notorious UV/IR gnixive
observed that the simple ansdtz]2.1) for the lattice spacing works in a s@tigfeay.

Hence the bases is now provided to study the observables of physicakiraed extrapolate
them to the DSL. In particular, the Wilson loop correlators — examples anersho Figure[P
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Figure 3: The Wilson loop in the commutative plane: the plot on thedefpicts the loops themselves (they
are real) against the dimensional area. On the right we shevearrelation of 6< 6 loops, separated in
Euclidean time.

— provide the bases for the evaluation of the “photo-ball spectrum”. We ladpe to obtain

results for the NC distortion of the photon dispersion relation, which could Heeconfronted

with experimental data. Several high precision experiments dealing with coagscare about

to measure the photon dispersion to a very high accuracy, over a laoge of energies (see for
instance Ref.[[29]).

While our results suggest the existence of a finite continuum theory, wehaitperturbative
calculations revealed an infrared instability of the trivial vacufirh [20]¢ag as the model is not
rendered supersymmetric). Indeed, we do observe numerically thgi¢heRmlyakov lines (which
are star-gauge invariant as well) acquire non-zero expectation yaluaordance with perturba-
tion theory. We therefore consider that we are actually probing a stableirg which might be
obtained after the condensation of “tachyons” in the trivial vacuum. Thigeishall be discussed
in a forth-coming paper.
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