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Figure 1: Geometrical construction of the orbifold for gauge fields.

1. Five—dimensionalSU(N) gauge theories

The motivation to look at gauge theories in four plus one compact extra diomsreome from
an alternative mechanism for electroweak symmetry breaking where the Félg is identified
with (some of) the fifth dimensional components of the gauge field. Due to thendiamdul
coupling g;, five—dimensional gauge theories are nonrenormalizable. Neverthlielgssan be
employed as effective theories at finite cutdff The claim is that the mass of the Higgs field is
finite to all orders in perturbation theory. So far phenomenological apigitaof these ideas are
mostly based on 1-loop computations and we would like to understand if theyahte beyond
that.

2. A geometrical construction of theS!/Z, orbifold

We consider the Euclidean manifoRf* x St parameterized by the coordinates- (X, xs),
whereuy = 0,1,2,3 andxs € (—niR, tR]. The coordinatess are identified modulo 2R. The
definition of gauge fields on such manifold requires (at least) two operagping charts. We
chooselé” ={Xy,xs € (—€,MR+¢€)} andlg(*) = {Xy,xs € (—MR—¢€,€)} and denote by\,(\,f) and
Afvl_) (M =0,1,2,3,5is the five—dimensional Euclidean index) the corresponding gauge figlus in
Lie algebra. The parameterdetermines the size of the overlaps among the cl@rts: {x,,Xs €
(—&,6)} andO2 = {x,,xs € (MR— €, MR+ €)}. The situation is schematically represented in
Fig. 1. In order to ensure gauge invariance, the two gauge fields orvéhaps, where they are
both defined, are related by a transition functiéfz) € SU(N)

Ay = 9ASG +gougt, onO;i=1.2. (2.1)

The orbifold projection ofs' onto S'/Z, amounts to the identification of points and fields under
theZ, reflection#, which is defined to act on coordinates and fields through

A7 =1, Z=(Xy,—Xs), (2.2)
ZP(2) = avAu(2), au=1, as=-1. (2.3)
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The orbifold projection for the gauge field identifies

At = Ay (2.4)

on the overlaps, When@A,(\,T) is defined. Outside the overlaps the fielkﬁ)(z) andA,(v,_)(Z) are
identified. At this point we need only one gauge field, which we take tdy\pe= Aﬁ,T). Eq. (2.4)
together with Eq. (2.1) imply theonstraint

AP =GAnG  +Gong T, (2.5)
which is self-consistent when
(%99 = expi2nk/N) x 1y, k=0,1,...,N—1. (2.6)
Covariance of the constraint Eq. (2.5) requires under a gaugedraraionQ
g 2L (#Q)9at. 2.7)
The gauge covariant derivative gfis then defined through
DvMY = onY +(ZAw)Y —9Au = 0 (2.8)

and by virtue of the constraint Eq. (2.5) it vanishes identically.

The fundamental domain of the orbifold is the stigp= {x,,%s € [0, TR }. The gauge theory
on lp is obtained by starting from the gauge invariant theory formulated on the Igha Ié” =
{Xu,xs € (—¢&, MR+ ¢) } in terms of the gauge fieldy and thespurionfield (the transition function)
¢. This theory is gauge invariant under gauge transformations that obey

ZQ = Q. (2.9)

The spurion field transforms like the field strength tensor, see Eq. (2h8.p@rametet is then
set to zero and the spurion field subject to loeindary conditions

G (Xu, X5 =0) = g = G (Xy,Xs = TIR) (2.10)

whereg is a constant matrix. It follows from Eq. (2.6) thgitis an element of the center 8tJ(N).
At the boundariess = 0 andxs = 1R of the strip all derivatives o/ are required to vanish. From
Eq. (2.5) the boundary conditions fanyfield can be derived, for example

amAv = gAvwg ! Dirichlet boundary conditions (2.11)
—amdsAm = gdsAv g~ Neumann boundary conditions (2.12)

Itis clear from Eq. (2.7) that only the gauge transformations satisfying
[0,Q(z)] = 0, atxs=0andxs = TR (2.13)

are still a symmetry: the gauge groupbi®kenat the boundaries i #~ 1.
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A parameterization of the matrixis given by
g= e 2mVH (2.14)

whereH = {H;},i =1,...,N — 1 are the Hermitian generators of the Cartan subalgebB&Jd¥)
andV = {\i} is the twist vector of the orbifold. It follows that under group conjugatiorglifie
Hermitian generator§” of SU(N) transform ag TAg~! = nATA, n”A = +1[1]. The breaking of
the gauge group in Eq. (2.13) is determined by the choice of the twist vetdds @f the form

SU(p+0) — 2 = SU(p) x SU(q) x U (1). (2.15)

Eqg. (2.11) means that only the componeﬁ@&associated with generatof$', which do not com-
mute withg survive at the orbifold boundaries. Therefore we idenffy(z),g] with the Higgs
field. It transforms in some representation#f.

It is plausible that we can apply the Symanzik analysis of counterterms riormalizable
field theories with boundaries [2, 3] to the nonrenormalizable orbifold thdefined on the strip
lo. The latter is considered as effective theory at finite cutoffhe boundary term

tr{[As,9][As, 0]} (2.16)

is a Higgs mass term and is invariant under gauge transformations of thekenksubgroup’.
It would be a quadratically divergent (with the cutdf) boundary mass term. Explicit 1-loop
calculations [4] indicate that this term is not present and a shift symmetuyremgt forbids it [5].

In our geometrical construction the term Eq. (2.16) has to be derived drgauge invariant
term in the theory formulated on the chért It could come from

tr{Ds¥ Ds@} = 0 (2.17)

but this term vanishes identically due to Eq. (2.8). In fact there are nodaoy terms of dimension
less than or equal to four. The lowest dimensional boundary terms adgéntleasion five terms

1 1
PREU{QFMN Fwn and?Retr{gH\ANgFMN}- (2.18)
o 0

3. Lattice simulations of SU(2)

On the lattice we define the orbifold theory in the stgp= {z=a(ny,ns)| 0 <ns <Ns = %R},
wherea is the lattice spacing. In the following we assume periodic boundary conditiotiee
directionsu = 0,1, 2,3. The Wilson action for the orbifold reads

% pin the boundary

3.1
1 in all other cases. (3.1)

PV = %Zw(p)tr{l—U(p)}, w(p) = {
P

where the sum is over oriented plaquete3 he bare dimensionful gauge coupligigon the lattice
is defined througlff = 2Na/g{)2. The action Eq. (3.1) is identical to the one for the Schrédinger
Functional (SF) [6].
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Figure 2: Orbifold boundaries and bulk.

As it was shown in Ref. [1], on the lattice the orbifold is specified by imposiegahowing
Dirichlet boundary conditions in the four—dimensional boundary plah#secstriplg

U(zu) = gU(zu)gt, atns=0andns=Ns. (3.2)

We emphasize that these boundary conditions are of a different typéathtne SF, as thegon-
strainthe gauge variables at the boundaries but do not fix them completely. haitreecontinuum
limit the Dirichlet and Neumann boundary conditions, the latter “carried” bygthen propagator,
are recovered [1].

We present here first results from simulations of the five—dimens®é) gauge theory on
the orbifold. The matrixgin Eq. (2.14) is given by = —io3 (V = 1/2) and Eq. (3.2) implies that
the boundary links are parameterized in terms Of(&) phasep(z, u)

U(z i) = explip(z,n)os), atns=0andns =Ns. (3.3)

The simulation algorithm is composed of heatbath and overrelaxation updateshnlk, where
the gauge group iSU(2), and for the four—dimensionkl(1) boundary links.

Five—dimensionaBU(N) gauge theories in infinite volume have a phase transition separating
the Coulomb phase with massless gluons at very Igr@f@m the confining phase at very small
B [7, 8]. ForSU(2) the phase transition is # = 1.642(15) [7]. In Fig. 2 we show results of
simulations of the orbifold witiNs = 3 and two different four—dimensional volumes*khd 16.
We plot the expectation values of the four—-dimensional plaquettes-a0 andns = 1 (equal to the
ones aing = 3 andns = 2 respectively). We see that the orbifold is similar to the torus geometry
in the sense that arour@i= 1.6 there is a jump of plaquette values and we observed hysteresis
effects. In the middle of the extra dimension the plaquette values are vegytoldise ones on a
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10* x 4 torus. At the boundaries the plaquettes are “colder”. We do notabsegnificant effects
when changing the four—dimensional volume.
We have done a meanfield computation for the orbifold geometry as followsetWe

U(Zau) = U(n5) X 1z, ns =0,...,Ns (34)
U(z,5) = u(ns+1/2) x 1, ns=0,...,Ns—1 (3.5)
The meanfield computation amounts to an iterative solution of a system of equfatidhe factors

u. Each link is equated to its expectation value in the fixed configuration of atittter links for a
given value of3. We get, for the boundary links ag = 0 (plus sign) anais = N5 (minus sign):

b = B[(1/2)6u(ns)®+u(ns + 1) u(ns + 1/2)?] (3.6)
u(ns) = I1(b)/lo(b), 3.7)
for theSU(2)—linksU(z, ) in the bulk atns = 1,..., (N5 — 1):

b = B[6u(ns)® +u(ns +1/2)?u(ns + 1) +u(ns — 1/2)?u(ns — 1)] (3.8)
u(ns) = I2(b)/11(b), (3.9)

and for theSU(2)-linksU (z,5) along the extra dimension ag = (1/2)...(Ns—1/2)
b = B8u(ns—1/2)u(ns)u(ns +1/2) (3.10)
u(ns) = Iz(b)/l1(b). (3.11)

The meanfield plaquette value¢D)* andu(1)* for Ns = 3 are plotted in Fig. 2 for “largep values

(at lower B only the solutionu = 0 is found). They show qualitatively the difference between

plaquettes at the boundaries and in the middle of the extra dimension as it is He®eimulations.
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