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1. Introduction

The spontaneous breaking of global center symmgltry [1] observed itesioms of pure fun-
damental lattice Yang-Mills theories at finite temperature has offered uniggéimsto their still
elusive dynamicg]2]. Whether and in what sense this holds for the patively equivalent center-
blind adjoint discretization, as universality predidls [3], must still be appately answered [4].
The difficulties inherent to such non-perturbative regularization haes lvell known for a long
time [g§] and are best illustrated by the phase diagram of the mixed action, fahiSt(2) reads

sy (-3 ) 4oy (1 Jete ) B-doesZa o

The theory exhibits bulk transitions related to the condensatidfy shonopoleso, € SO(3) and
vorticesaj; € SU(2) which hinder the study of its finite temperature properfigs [6]. Fostiete
attempts to study it at finite temperature by implementing suppressing chemicaigletey (1 —

oc), Y31 (1—ay), as suggested iff][6], were only made relatively receiffly [7]. For theecétind
casefr = 0, y = 0, where the bulk transition separates a strong coupling phase |, comjinuos
connected with SU(2), from a weak coupling phase I, there is no symretaking mechanism
and no order parameter. In these works it was however first olbéms in such pure adjoint
case at high temperature the theory possesses, besides the “regolamfided phase, where the
adjoint Polyakov loo.a — 1, a new phase whellex — —1/3. In [8] a dynamical observable
measuring the twist expectation valm&vas introduced after noting that tid&o. — 1) constraint
effectively implemented by, monopole suppression allows the SO(3) partition function to be
rewritten as the sum of SU(2) partition functions with all possible twisted bawyndonditions
Z|,—i [@. ThelLa — —1/3 phase was linked to a non-trivial twist expectation value, i.e. to the
creation of a vortex in the vacuum. The SO(3) theory was proposed &detildest case to check
the 't Hooft vortex confinement criterion JILO]. Unfortunately twist sestiseeze at the bulk and
attempts with a multicanonical algorithm &t= 0 have been limited to volumes not higher then
8 x4 [B]. Other attempts to study the existence of a finite temperature transitionse phaith

A # 0 through thermodynamic observables were limited to very small temporal ékten® [[LT],
confirming that the continuum limit is a real challenge for the adjoint theorytep forward was
made in [IR[13], where by means of the Pisa disorder parameter for mlenmmdensation lines

of second order transition properly scaling with and ending on the bulk where actually found
at eachfixedtwist, with critical exponents consistent with Ising 3-d. Whether such is the akso

for the theory summed over all twist sectors and how the vortex free ybetwaves in the ergodic
simulations is the subject of the present preliminary report, based on ther possented at this
conference. A complete analysis of the model with updated results, incladiethiled description

of the algorithm and error analysis can be found i [14].

2. Action and Observables

As anticipated, we will concentrate on the pure adjoint Wilson action (Ed) ith 8- =
0), modified by the suppression teriny (1 — oc), where o = [peacSigN(TreUp) around all
elementary 3-cubes defines theéZ, magnetic charge. Its densiiyi = 1 — <Nic Y 0c) tends to
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one in the strong coupling region (phase 1) and to zero in the weak couptirig phase II),N
denoting the total number of elementary 3-cubes. Such action is centeiirbtimel entireSa — A
plane [15]. We will employ parallel tempering to obtain ergodicity among diffeteist sectors
when evaluating the expectation values of physical observables, e.gisthelisorder parameter
and the 't Hooft vortex free energy.

2.1 Vortex Free Energy

Temporal twists, corresponding to maximal 't Hooft loop and defining euater vortices, are
topological excitations which offer a natural link between center symmetgkimg and degrees
of freedom independent of the discretization used [10]. It has beewrk for a long time in
the literature that SO(3) witi, monopole chemical potential in phase Il is equivalent to SU(2)
including all possible twisted b.c[][9]

> Zsup) = /(DU)eisqu) [10(0c—1) ~ Zsqz) [h—o - (2.1)
b.c. c

Above the bulk SO(3) trades thus boundary conditions with twist sectosssts] i.e. 't Hooft
loops, thus becomebservablesather than boundary constraints like in SU(2):

:I\TZZ [ sionTriti(x). (2.2)

S jk#ixe(it)plane

z

Since creating such 't Hooft loop amounts to a change in the signs of someeftes, the free
energy changAF = AU — TASwill only receive an entropy contribution for adjoint discretizations,
the action remaining unmodified in the process. Defining thus the 't Hoofexdree energy
as the ratio of the partition function in the non-trivial twist sector to that in theatroneF =
—TlogZ|,-1/Z|,—0, their relative weight can be measured through an ergodic simulation. To be
an order parameter in the thermodynamic lifvit=£ N — ), F should vanish exponentially in
the confined phase while diverging with an area aw GNZ above the deconfinement transition,
whered is the dual string tension. Working at= 0 proved however to be a hurdle, since the
“freezing” of twist sectors above the bulk transition yields high potentiaiiés hard to overcome
even with a multi-canonical algorithnp][8]. From the results[i] [15] it is soundaigjecture that
the whole physically relevant SO(3) dynamics lies in phase I, the finite teatyertransition
eventually decoupling from the bulk evenat= 0. Unfortunately, from estimates iff [8], this should
not happen for volumes smaller than500x 100G A non-vanishingh seems therefore the only
feasible way to gain access to the properties of the continuum limit of SO{3. observation
made in [[7] that the bulk transition weakens 9 arder with increasing will prove crucial in this
respect.

2.2 Pisadisorder parameter

The Pisa disorder operator, measuring monopole condensation, iserpardmeter for the
dual superconductor mechanism of confinemprt [16]: It is definedithtSy, the action modified
through a bosonic fiel@ introduced at fixed time and invariant under a residual gauge symmetry
U(1), does not dependent from the particular choicedfcand is well defined, independently of
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center symmetry, also for full QCD. Its derivativg, is easier to compute in actual numerical

simulations: (S-S
—(Su—9 a— B

ForT < T¢ (u) # 0 signals spontaneous breaking of U(1), correspondimgo0, bounded from
below forNs — . At the phase transitiop should show a sharp negative peal@adiverging for

Ns — oo, while for T > T; (1) = 0 corresponds to the trivial vacuum [0 —Ns for Ns — ). More

details regarding its implementation for SO(3) can be founflih[[32, 13].

3. Fixed twist dynamics

It was shown in[[13] that for SO(3) in phase Il at fixed twist and IBw p ~ 0z, as one would
expect from a confined phagepeaks at some@ependent!Bg; at high Ba p diverges forz=0,
while it vanishes forz# 0. Moreover eacle-sector can be mapped in a different positive plaquette
model, making fundamental observables measurable while the adjoint saT@ins untouched.
This is consistent with different twist sectors possessing slightly diffanederlying fundamental
dynamics in the confined phase, but very different ones above fileeorent, the twist behaving
effectively like a background field. Each twist sector measures slightlgrdiit string tensions
in the confined phase (through Creutz ratios and Polyakov loop cor®land deconfinement
temperatureg[13]. From the above fixed twist measurements it is thusIrtatesgect that the
ergodic expectation value of
() = i Il-\z:izsqs) ’.z:i

YiZsq3)lz=i

(3.1)

at low Ba will be (u) ~ 0, while at highBa (1) ~ (u)|.—0(1— e F/T). In whole phase Il the
ergodic theory would be consistent with confinement at wand with deconfinement at high

Ba. To establish whethau actually still behaves as an order parameter its expectation value at the
physical transition must be studied through an ergodic algorithm.

4. Parallel Tempering

The idea of Parallel tempering (s¢e][17] for a review) is to simulate at the thiameeveral en-
sembles above and below the bulk transition. Each ensemble is caractgrazédkconfiguration
Ci and a set of couplingg;. To reach ergodicity one lets them evolve separately swapping every
few MC steps thé" and (i — 1)!" ensemble through a generalized Metropolis step with weight

W = e (S(Bi.Ci-1)+S(Bi-1,G))+(S(B,.C)+S(Bi-1.Ci-1)) (4.1)

As Fig.[1 shows this works very well, although it is crucial to fine tune tharpaters to optimize
acceptance rate and keep auto- and cross-correlations underl gbfitr&ince phase | has a high
tunnelling probability, the softening of the bulk transition t& ®rder is crucial to "transport"
tunneling into phase II. Working on thé'brder bulk branch would have led to high barriers and
thus to no ergodicity for large volume.
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Figure 1. MC history of the twist variables and the adjoint Polyakowepgd.a below the bulk transition
for (Ba,A) = (1.,0.768) (left) and above the transitiofi.042 0.792) (right) belonging to the same parallel
tempering run\{ = 16° x 4).

5. Resaults

As explained in Secf] 3, we need to establish whethgives a clear signal for a phase tran-
sition through ergodic runs. This is shown in Aif. 2-left. Due to the algorithenmust choose a
path that starts close to the bulk and goes above the deconfinement trangitionoth branches
not too far away from each other. Such path gives competing efféstg @ also diverges at the
bulk [I2,[I3]. As forF, in phase | and at higBa it behaves as expected. The surprise comes in
the confined phase of phase Il, where the free energy doesiishvFig.[2-right), taking negative
values. We checked that away from both transitieragso reaches constaiy dependent negative
values throughout the confined phase Il.
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Figure 2: Pisa disorder operator (left) and vortex free energy (Jight

6. Conclusion and Outlook

We study the finite temperature transition in a modified SO(3) lattice gauge tt&aryover
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twists for ergodicity is reached through parallel tempering. The Pisa disparameter is used
to characterize the properties of the different phases, so that monoedt®ndensation could be
used to obtain the critical exponents. Although well defined for SO(3);ttHeoft vortex free
energy behaves unexpectedly, being negative in the confined ph&®(8). The meaning of
such vortex enhancement could be relevant for the dynamics of contitvamg-Mills theories.
However, contrary tqu, F seems not to behave as an order parameter in the theory discretized
without fundamental components. Keeping in mind the full QCD case, théwalgcseems to be
no compelling reason why in a center-blind regularization of Yang-Mills $haarorder parameter
for center symmetry breaking should vanish. Universal, representati@pendent observables
should however be preserved, so further confirmations of the ¢qutgsical behaviour of the
adjoint dynamics through e.g. the glueball spectrum might therefore bestitey. Also, the
extension to SU(3) should shed further light on the problem. For furtiseusisions and a more
detailed analysis we refer tp [14].
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