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1. Introduction

The spontaneous breaking of global center symmetry [1] observed in simulations of pure fun-
damental lattice Yang-Mills theories at finite temperature has offered unique insight into their still
elusive dynamics [2]. Whether and in what sense this holds for the perturbatively equivalent center-
blind adjoint discretization, as universality predicts [3], must still be appropriately answered [4].
The difficulties inherent to such non-perturbative regularization have been well known for a long
time [5] and are best illustrated by the phase diagram of the mixed action, whichfor SU(2) reads

S= βA∑
P

(

1−
1
3

TrAUP

)

+βF ∑
P

(

1−
1
2

TrFUP

)

;
1
g2 =

1
4

βF +
2
3

βA . (1.1)

The theory exhibits bulk transitions related to the condensation ofZ2 monopolesσc ∈ SO(3) and
vorticesσl ∈ SU(2) which hinder the study of its finite temperature properties [6]. First concrete
attempts to study it at finite temperature by implementing suppressing chemical potentialsλ ∑c(1−
σc), γ ∑l (1−σl ), as suggested in [6], were only made relatively recently [7]. For the center blind
caseβF = 0, γ = 0, where the bulk transition separates a strong coupling phase I, continuosly
connected with SU(2), from a weak coupling phase II, there is no symmetrybreaking mechanism
and no order parameter. In these works it was however first observed how in such pure adjoint
case at high temperature the theory possesses, besides the “regular” deconfined phase, where the
adjoint Polyakov loopLA → 1, a new phase whereLA → −1/3. In [8] a dynamical observable
measuring the twist expectation valuez was introduced after noting that theδ (σc−1) constraint
effectively implemented byZ2 monopole suppression allows the SO(3) partition function to be
rewritten as the sum of SU(2) partition functions with all possible twisted boundary conditions
Z|z=i [9]. The LA → −1/3 phase was linked to a non-trivial twist expectation value, i.e. to the
creation of a vortex in the vacuum. The SO(3) theory was proposed as theideal test case to check
the ’t Hooft vortex confinement criterion [10]. Unfortunately twist sectors freeze at the bulk and
attempts with a multicanonical algorithm atλ = 0 have been limited to volumes not higher then
83×4 [8]. Other attempts to study the existence of a finite temperature transition in phase II with
λ 6= 0 through thermodynamic observables were limited to very small temporal extentNτ = 2 [11],
confirming that the continuum limit is a real challenge for the adjoint theory. A step forward was
made in [12, 13], where by means of the Pisa disorder parameter for monopole condensation lines
of second order transition properly scaling withNτ and ending on the bulk where actually found
at eachfixedtwist, with critical exponents consistent with Ising 3-d. Whether such is the case also
for the theory summed over all twist sectors and how the vortex free energy behaves in the ergodic
simulations is the subject of the present preliminary report, based on the poster presented at this
conference. A complete analysis of the model with updated results, includinga detailed description
of the algorithm and error analysis can be found in [14].

2. Action and Observables

As anticipated, we will concentrate on the pure adjoint Wilson action (Eq. (1.1) with βF =

0), modified by the suppression termλ ∑c(1− σc), whereσc = ∏P∈∂csign(TrFUP) around all
elementary 3-cubesc defines theZ2 magnetic charge. Its densityM = 1− 〈 1

Nc
∑c σc〉 tends to
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one in the strong coupling region (phase I) and to zero in the weak couplinglimit (phase II),Nc

denoting the total number of elementary 3-cubes. Such action is center-blindin the entireβA−λ
plane [15]. We will employ parallel tempering to obtain ergodicity among different twist sectors
when evaluating the expectation values of physical observables, e.g. thePisa disorder parameter
and the ’t Hooft vortex free energy.

2.1 Vortex Free Energy

Temporal twists, corresponding to maximal ’t Hooft loop and defining our center vortices, are
topological excitations which offer a natural link between center symmetry breaking and degrees
of freedom independent of the discretization used [10]. It has been known for a long time in
the literature that SO(3) withZ2 monopole chemical potential in phase II is equivalent to SU(2)
including all possible twisted b.c. [9]

∑
b.c.

ZSU(2) =
∫

(DU)e−SSO(3) ∏
c

δ (σc−1) ≃ ZSO(3) |λ→∞ . (2.1)

Above the bulk SO(3) trades thus boundary conditions with twist sectors. Twists, i.e. ’t Hooft
loops, thus becomeobservablesrather than boundary constraints like in SU(2):

z=
1

N2
s

∑
j,k6=i

∏
x∈(i,t)plane

sign(Tr fUi,t(x)) . (2.2)

Since creating such ’t Hooft loop amounts to a change in the signs of some plaquettes, the free
energy change∆F = ∆U−T∆Swill only receive an entropy contribution for adjoint discretizations,
the action remaining unmodified in the process. Defining thus the ’t Hooft vortex free energy
as the ratio of the partition function in the non-trivial twist sector to that in the trivial oneF =

−T logZ|z=1/Z|z=0, their relative weight can be measured through an ergodic simulation. To be
an order parameter in the thermodynamic limit (V = N3

s → ∞), F should vanish exponentially in
the confined phase while diverging with an area lawF ∼ σ̃N2

s above the deconfinement transition,
whereσ̃ is the dual string tension. Working atλ = 0 proved however to be a hurdle, since the
“freezing” of twist sectors above the bulk transition yields high potential barriers hard to overcome
even with a multi-canonical algorithm [8]. From the results in [15] it is sound toconjecture that
the whole physically relevant SO(3) dynamics lies in phase II, the finite temperature transition
eventually decoupling from the bulk even atλ = 0. Unfortunately, from estimates in [8], this should
not happen for volumes smaller than∼ 500×10003. A non-vanishingλ seems therefore the only
feasible way to gain access to the properties of the continuum limit of SO(3). The observation
made in [7] that the bulk transition weakens to 2nd order with increasingλ will prove crucial in this
respect.

2.2 Pisa disorder parameter

The Pisa disorder operator, measuring monopole condensation, is an order parameter for the
dual superconductor mechanism of confinement [16]: It is defined throughSM, the action modified
through a bosonic fieldΦ introduced at fixed time and invariant under a residual gauge symmetry
U(1), does not dependent from the particular choice forΦ and is well defined, independently of
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center symmetry, also for full QCD. Its derivative,ρ, is easier to compute in actual numerical
simulations:

〈µ〉 =

∫

(DU)e−(SM−S)e−S
∫

(DU)e−S = exp

(

∫ β

0
ρ(β ′)dβ ′

)

. (2.3)

For T < Tc 〈µ〉 6= 0 signals spontaneous breaking of U(1), corresponding toρ ∼ 0, bounded from
below forNs → ∞. At the phase transitionρ should show a sharp negative peak atβ c diverging for
Ns → ∞, while for T > Tc 〈µ〉 = 0 corresponds to the trivial vacuum (ρ ∝ −Ns for Ns → ∞). More
details regarding its implementation for SO(3) can be found in [12, 13].

3. Fixed twist dynamics

It was shown in [13] that for SO(3) in phase II at fixed twist and lowβA ρ ∼ 0∀z, as one would
expect from a confined phase;ρ peaks at some (zdependent!)β c

A; at high βA ρ diverges forz= 0,
while it vanishes forz 6= 0. Moreover eachz-sector can be mapped in a different positive plaquette
model, making fundamental observables measurable while the adjoint sector remains untouched.
This is consistent with different twist sectors possessing slightly different underlying fundamental
dynamics in the confined phase, but very different ones above deconfinement, the twist behaving
effectively like a background field. Each twist sector measures slightly different string tensions
in the confined phase (through Creutz ratios and Polyakov loop correlators) and deconfinement
temperatures [13]. From the above fixed twist measurements it is thus natural to expect that the
ergodic expectation value ofµ

〈µ〉 =
∑i µ|z=iZSO(3)|z=i

∑i ZSO(3)|z=i
(3.1)

at low βA will be 〈µ〉 ≃ 0, while at highβA 〈µ〉 ≃ 〈µ〉|z=0(1− e−F/T). In whole phase II the
ergodic theory would be consistent with confinement at lowβA and with deconfinement at high
βA. To establish whetherµ actually still behaves as an order parameter its expectation value at the
physical transition must be studied through an ergodic algorithm.

4. Parallel Tempering

The idea of Parallel tempering (see [17] for a review) is to simulate at the sametime several en-
sembles above and below the bulk transition. Each ensemble is caracterized by a link-configuration
Ci and a set of couplingsβi . To reach ergodicity one lets them evolve separately swapping every
few MC steps theith and(i−1)th ensemble through a generalized Metropolis step with weight

Wi = e−(S(βi ,Ci−1)+S(βi−1,Ci))+(S(βi ,Ci)+S(βi−1,Ci−1)). (4.1)

As Fig. 1 shows this works very well, although it is crucial to fine tune the parameters to optimize
acceptance rate and keep auto- and cross-correlations under control [14]. Since phase I has a high
tunnelling probability, the softening of the bulk transition to 2nd order is crucial to "transport"
tunneling into phase II. Working on the 1st order bulk branch would have led to high barriers and
thus to no ergodicity for large volume.
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Figure 1: MC history of the twist variables and the adjoint Polyakov loop LA below the bulk transition
for (βA,λ ) = (1.,0.768) (left) and above the transition(1.042,0.792) (right) belonging to the same parallel
tempering run (V = 163×4).

5. Results

As explained in Sect. 3, we need to establish whetherρ gives a clear signal for a phase tran-
sition through ergodic runs. This is shown in Fig. 2-left. Due to the algorithm, we must choose a
path that starts close to the bulk and goes above the deconfinement transition, with both branches
not too far away from each other. Such path gives competing effects, sinceρ also diverges at the
bulk [12, 13]. As forF , in phase I and at highβA it behaves as expected. The surprise comes in
the confined phase of phase II, where the free energy doesn’t vanish (Fig. 2-right), taking negative
values. We checked that away from both transitionsF also reaches constant,βA dependent negative
values throughout the confined phase II.
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Figure 2: Pisa disorder operator (left) and vortex free energy (right).

6. Conclusion and Outlook

We study the finite temperature transition in a modified SO(3) lattice gauge theory.Sum over
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twists for ergodicity is reached through parallel tempering. The Pisa disorder parameter is used
to characterize the properties of the different phases, so that monopole(de)condensation could be
used to obtain the critical exponents. Although well defined for SO(3), the’t Hooft vortex free
energy behaves unexpectedly, being negative in the confined phase of SO(3). The meaning of
such vortex enhancement could be relevant for the dynamics of continuum Yang-Mills theories.
However, contrary toµ, F seems not to behave as an order parameter in the theory discretized
without fundamental components. Keeping in mind the full QCD case, there actually seems to be
no compelling reason why in a center-blind regularization of Yang-Mills theory an order parameter
for center symmetry breaking should vanish. Universal, representationindependent observables
should however be preserved, so further confirmations of the correct physical behaviour of the
adjoint dynamics through e.g. the glueball spectrum might therefore be interesting. Also, the
extension to SU(3) should shed further light on the problem. For further discussions and a more
detailed analysis we refer to [14].
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