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1. Introduction: Confinement scenario in Coulomb gauge
The Faddeev—Popov operator in Coulomb gauge
M(A) =—-0-2(A), where  Z7(A) = 3,6%+ f3AP(x), (1.1)

plays a crucial role in the Gribov—Zwanziger confinement scenfrid|[1t énters the kerneK in
the (classical) Coulomb energy of a color charge distribution

1
Hcoul = E /d3Xd3y pa(X)Kab(X7 Yi A)pb(y)7 pa = pr%atter_ fabCAb ' Ec’ (1-2)

where
ab

K®(x,y;A) = M~ (=) MY 0

(1.3)

The essence of the scenario can be summarized in the following way: THenidmgauge
condition - A% = 0 does not fix the gauge completely. Gribd} [1] suggested to restrict to the
subspace of transverse gauge fields for which the Faddeev—Pppostar is positive, i.e. local
minima with respect tg(x) of

I[A, g] = / dx[9A%(X)]%, where 9A =g 'Ag+g lag. (1.4)

The boundary of this Gribov region (GR) is called tagbov horizon However, even this does not
eliminate the Coulomb-gauge ambiguities completely, one has to further narrayatige-field
configuration space to tfendamental modular regioFMR), i.e. the set of absolute minima of
the functional [[1}4). Both the GR and the FMR are bounded in every direatid convex. The
dimension of the gauge-field configuration space is huge, so it is rdasdimaexpect that most
configurations are located close to its boundary (horizon). The intenaotimelK contains the
inverse of the FP operator, which is strictly zero on the horizon andzezarelose to the horizon.
A high density of configurations near the horizon leads to a strong eahmant of the Coulomb
interaction energy, and hopefully causes color confinement.

In this contribution we formulate a simple criterion of confinement for static ccharges
through properties of eigenstates of the FP operator in Coulomb gaugdelbe Gribov horizon,
and then discuss how the fulfillment of this criterion depends on presé&sesfee of center vor-
tices. Details, as well as some analytic insights on the connections betweenw®tices and the
Gribov horizon, can be found in a recent publicatign’3].

2. Lattice Faddeev—Popov operator and its eigenstates
If we parametrize link variables in SU(2) lattice gauge theory by

Uu(X) =bu(x) +i0%a(x),  bu(x)*+ Y & (x)*=1, (2.1)

1We have also investigated localization properties of the lowest nontrivieheggtors of the Faddeev—Popov oper-
ator in Coulomb gauge. These were discussed in Jeff Greensite’s thlk abnference and in Sect. V of Reﬂ [4].
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the lattice Faddeev—Popov operator in Coulomb gauge is given by the folj@xpression:

my = 55 {8 [0 + b(x = R)] = & X~ & V) }

= &0y {8 10— i} (2.2)
We are interested in its eigenstates
bZMfyb R W (2.3)
7y

in particular in their properties near to the Gribov haorizon (i.e. in the limit> 0). The most
relevant quantities are

¢ the density of eigenstatggA ), and

e the average Laplacian:
Fo= Y ol (-02)g™™ (2.4)

axy
3. A confinement condition

We shall now formulate a simple confinement criterion in terms of properticgenstates of
the FP operator. The energy of a static color charge $tg{é; x| in Coulomb gauge

&= <wg|Hcoul‘wg>

(W] pa) — (WolHcoul Wo) ~ (K*(x,x; A)) (3.2)
cl™c
can be easily shown to be given by
1 F . Amax )
c=ap3(32) g [THEMFN) frvioe @2

An immediate consequence is thia¢ excitation energy of a static, unscreened color charge
is divergent if, at infinite volume,
. AF(A
lim M > 0.

A—0 A
This criterion is a necessary but not sufficient condition for confineénzenexplicit example will
be given at the end of Sel. 5. (It is obviously not fulfilled in the free thesherep(A) ~ v/A,

F(A) = A, and consequentl ~ v/Amax.)

(3.3)

4. Three ensembles of lattice configurations

We will investigate fulfillment of the conditior] (3.3) in three ensembles of conditons:
1. full configurations, {U(x)};
2. “vortex-only” configurations. these are obtained from full configurations fixed to the (di-
rect) maximal center gaugf [5] by center projectifify, (x) = sign Tl{UﬁMCG) )]}
3. “vortex-removed” configurations obtained by the recipe of de Forcrand and D’E[il [6]:
{UY (0 = ZL (UL ).
Each configuration in these three ensembles was brought to Coulomb lgyuggximizing
with respect to gauge transformations, on each time siggi(t) = 5 Y5_1 3 Tr[Uk(X,t)].
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Figure 1: p(A) andF(A) for full lattice configurations.
5. Results

Pure gauge theory at zero temperaturdhe results forfull configurationsat 8 = 2.1 are
shown in Figurd]1, for a series of lattice volunfe®oth p(A) andF(A) exhibit a sharp “bend”
nearA — 0, and behave near 0 like a small poweofA scaling analysis similar to that used in
random matrix theory gives the estimates

P(A)~ A% F(A)~ 2038 (5.1)

The confinement conditiof (3.3) is obviously satisfied, which is a direct mstaifion of the mech-
anism proposed by Gribov and Zwanziger.

The situation invortex-only configurationis displayed in Figur§] 2. The enhancement of the
density of states is even more pronounced than in full configuration®@hdjuantities of interest
seem to converge to a hon-zero value in the infinite volume limit

p(0) ~0.06,  F(0)~ 10. (5.2)

(though their proportionality to very small powers dfcannot be excluded). Once again, the
condition (3.B) is fulfilled.
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Figure 2: p(A) andF (A) for vortex-only (center-projected) configurations.

2The results fo8 = 2.3 and 24 can be found in Ref|][3], and are qualitatively the same as thogg foR.1.
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Figure 3: p(A) andF (A) for vortex-removed configurations.

The eigenvalue spectrum of the FP operator is drastically differenpitex-removed config-
urations see Figurg]3 for the largest available? 28ttice. The density displays a series of peaks,
and values of-(A) are organized into bands, separated by gaps. This can be undewstoed
simply: For the Laplacian operator (equal to the FP operator at zerai¢h iorthe gauge coupling)
the eigenvalue density, at finite volume, is a sum of delta-functions, aidedgenvalue is multi-
ply degenerate. The vortex-removed configuration seems to be just goematbation around the
zero-coupling limit, which lifts the degeneracy. In this way, delta-functiorieéndensity of states
turn into distinct peaks of finite width, and degenerate valués(af) spread into bands. The num-
ber of values inside thieth band ofF (A ) exactly matches the degeneracy of ki eigenvalue of
the unperturbed Laplacian operator.

This result demonstrates a deep relation between the Gribov-horizoreatet-gortex con-
finement mechanism. Center vortices seem tthbdeld configurations providing the mechanism
needed for enhancement of eigenvalues near the horizon.

Pure gauge theory in the deconfined phask seemingly paradoxical result is obtained above
the deconfinement transition: our quantities ab@vkok the same as at = 0 (cf. Figure[4 with
Figs.[1 and]2)! However, one should keep in mind that spacelike links eoafining ensemble
even in the deconfined phase, and spacelike Wilson loops have anvateehiavior.

The result for the deconfined phase can be naturally explained in thev@rdyizon scenario.
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Figure 4: p(A) andF (A) in the deconfined phase, for full and vortex-removed conéiomns.
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In Coulomb gauge the gauge fixing is done independently on ehtim@ slice. According to the
horizon scenario, on each time slicel GonfigurationsA(x) are favored that lie near the horizon
of a 3d gauge theory, and this enhances the instantaneous color-Coulomb poTéisigs true for
everytemperaturd , including in the deconfined phase, because temperature determinetetiite ex
of the lattice in thfourth dimension. Thus, the horizon scenario provides a framework in which
confinement may be understood, but it is not detailed enough to tell us whaé conditions the
infinite color-Coulomb potential may ereenedo give a finite self-energy.

6. Conclusions

The low-lying eigenvalues of the FP operator in Coulomb gauge tend towardsas the
lattice volume increases. The density of the eigenvalues goes as a smallgfodyeand this,
together with a similar behavior of the average Laplackafy ), assures the infrared divergence
of the energy of an unscreened color charge. These $agisort the ideas of the Gribov-horizon
confinement scenario

The constant density of low-lying eigenvalues can be attributed to the vooteponent of
gauge-field configurations. A thermalized configuration in a pure gawge\ttiactors into a con-
fining piece (the vortex-only part), and a piece which closely resemblésttive of a gauge—Higgs
theory in the Higgs phase (the vortex-removed configuration). Thislestasfirm connection be-
tween the center-vortex picture and the Gribov-horizon scenario

The Gribov—Zwanziger scenario, though invented to explain confinensamerative also in
the finite temperature deconfined phase.

Here we only covered results of our numerical investigations. Relatdgtimabdevelopments
were omitted and can be found in our recent publicafipn [3].
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