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fields coupled to a compact Abelian gauge field in the London limit. The model attracts interest

because of its relevance to high-Tc superconductors with charge 1 holon and charge 2 spinon-pair

fields. It contains two types of vortices carrying magnetic flux and one type of instanton-like

monopoles. Using thermodynamic and topological observables we present the phase diagram in

the parameter space of the gauge and holon and spinon-pair couplings. The Fermi liquid, the spin

gap, the superconductor and the strange metallic phases have been identified in a wide region of

parameters. The model may serve as a toy system modelling non-perturbative properties of the

Yang-Mills theory.
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1. Introduction

The physics of high-Tc superconductivity [1] is not understood yet. At normal temperatures, all
known high-Tc superconductors are ceramic crystals characterized by a poor conductivity. At low
temperatures the clean ceramic materials are rather insulators than conductors (Mott insulators).
However, as one adds impurities to the clean material (“doping”), a good insulator becomes in
certain cases a superconductor at low enough temperatures.

Despite superconducting specimen are three-dimensional structures the physics of high-Tc su-
perconductivity is believed to be essentially two-dimensional [1]. In fact, all known high-Tc super-
conductors consist of copper oxygen (CuO2) lattice planes. In the undoped state the crystal does
not contain enough free carriers of electric charge. The role of impurities is to provide the carriers
– electrons (like in Nd2−xCexCuO4 case) or holes (like in La2−xSrxCuO4 material) – into the CuO2
planes, eventually making the CuO2 planes superconducting 2D systems. Therefore, the physics
of high-Tc superconductivity must be understood as an essentially 2D phenomenon.

Physically, there are two basic parameters: the temperatureT and the concentration of im-
purities (doping)x. The phase diagram of a real high-Tc superconductor is the temperature-
concentration plane and typically contains the following phases: a metallic, a pseudogap (found
in hole doped materials), an anti-ferromagnetic and a superconducting phase.

One popular approach to the physics of superconducting planes is based on a simplified model
describing the dynamics of holes and spins. Basically we have a lattice with hopping holes and
localized spins acting as dynamical variables. The lattice spacing and possible anisotropy is dic-
tated by the ceramic host material itself. The effective description is provided by thet−J Hamil-
tonian [1]:

HtJ =−t ∑
<i j>,σ

c†
iσ (1−ni,−σ )(1−n j,−σ )c jσ +J ∑

<i j>

(~Si~Sj − 1
4

nin j) , (1.1)

where the first term describes the hopping of holes or electrons without changing spin while the
second term describes the anti-ferromagnetic Heisenberg coupling between the spins located at the
copper-sites. Here~Si = (1/2)∑σσ ′ c

†
iσ~σσσ ′ciσ ′ is the spin operator,ciσ andni,σ are the electron

creation and occupation number operators for given spinσ , respectively, andni = ∑σ c†
iσ ciσ .

Even the simplifiedt− J model (1.1) is difficult to solve. One successful approach is based
on the slave boson formulation [2], which proposes to split the spin and charge variables of the
electrons. Let the electron creation operators be written asc†

iσ = f †
iσ bi , where fiσ is a spin-particle

(“spinon”) operator andbi is a charge-particle (“holon”) operator. In order to forbid double oc-
cupancy of sites one imposes the constraintf †

i↑ fi↑+ f †
i↓ fi↓+b†

i bi = 1 on the physical states of the
system.

The spinon is a fermionic chargeless particle which carries information about the spin of the
electron while the holon is a bosonic particle which is responsible for the electron charge. The
essential feature of the spin-charge separation approach is that it introduces an additional (internal)
compactU(1) degree of freedom which can be formulated as a gauge freedom on the operator
level:

ciσ → eiγi ciσ : fiσ → fiσ , bi → eiγi biσ [usual gauge freedom], (1.2)

ciσ → ciσ : fiσ → eiαi fiσ , bi → eiαi biσ [internal gauge freedom]. (1.3)
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2. The compactU(1) gauge model coupled to matter

The emerging effective theory of superconductivity can further be simplified and reformulated
as a lattice gauge model [3]. The basic idea is to neglect – or absorb into the couplings of the
effective model – the external gauge degree of freedom (1.2) and to concentrate attention to the
internal compact gauge degree of freedom (1.3). In fact, the coupling of the usual electromagnetic
field to the charge-carrying holon degrees of freedom (as well as the inter-holon interaction due to
the electromagnetic interaction) is relatively weak compared to the strong correlations among the
electrons in the lattice environment.

Thus, we go over from thet−J model (1.1) to a compact Abelian gauge model with internal
symmetry (1.3), which couples holons and spinons. As in usual BCS superconductivity, at certain
parameters of thet−J model the spinons couple and form bosonic quasiparticles. In a mean field
theory one can define the fields

χi j = ∑
σ
〈 f †

iσ f jσ 〉 → χi j ·e−i(αi−α j ) , ∆i j = 〈 fi↑ f j↓− fi↓ fi↑〉 → ∆i j ·ei(αi+α j ) , (2.1)

which behave under the internal gauge transformations (1.3) as a neutral (vector-like) particle and
a doubly-charged matter field, respectively. The phase of theχ-particle is associated with the
compactU(1) gauge field,θi j ≡ argχi j → θi j −αi + α j . The radial part of theχ-particle defines
the so-called “resonating valence bond” (RVB) couplingχ = 〈|χi j |〉, and the doubly-charged matter
field ∆ is called spinon-pair field (an analog of the doubly-charged Cooper pairs).

Usually the RVB coupling is treated in the mean-field approximation and therefore is assumed
to be fixed,χ(x) = χ ≡ const. Thus, the dynamical content of the effective model is given by a
singly-charged boson field (holon)b, a doubly-charged boson field (spinon-pair)∆ and the compact
U(1) gauge fieldθ .

At high temperature the RVB coupling is vanishing,χ = 0, and the system is in the Mott
insulator (or, poor metallic) phase, see Fig.1. As the temperature decreases, the RVB coupling is

Figure 1: The schematic phase diagram of theU(1) model for a high-Tc superconductor [3].

getting non-zero,χ 6= 0, enabling the formation of the spinon-pair condensate∆ = |〈∆i j 〉| and/or
of the holon condensateb = 〈bi〉. Depending on the presence of the condensates, four phases
classified in Ref. [3] may emerge. In Fig.1 they are sketched and denoted as the Fermi liquid, the
spin gap, the superconductor, and the strange metallic phases.
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3. The compact Abelian two-Higgs model on the lattice

Following the proposal in Ref. [3] the model described in Section2 can be studied as compact
Abelian two-Higgs model (cA2HM) inthreedimensions with aU(1) gauge link fieldθl , a single-
charged holon fieldΦ1, and a double-charged spinon-pair fieldΦ2. The qualitative characteristics
of the model become already visible in the London limit, in which the radial parts of both Higgs
fieldsΦi = |Φi |eiϕi are frozen,|Φi |= const, i = 1,2. The remaining dynamical Higgs variables are
the phases of the matter fieldsϕ1,2. The action of the cA2HM model in the London limit is:

S[θ ,ϕ1,ϕ2] =−β ∑
P

cosθP−κ1∑
l

cos(dϕ1 +θ)l −κ2∑
l

cos(dϕ2 +2θ)l , (3.1)

whereθP is the standard lattice plaquette field,d denotes the ordinary lattice derivative,(dϕ)x,µ =
ϕx+µ̂ −ϕx. The parameterβ is the inverse gauge coupling,κ1 ∝ t · x andκ2 ∝ J are the hopping
parameters of the holon and the spinon-pair field, respectively. They are proportional to the para-
meters oft−J model. The model (3.1) obeys theU(1) gauge invariance:

θ → θ +dα , ϕ1 → ϕ1−α , ϕ2 → ϕ2−2α , (3.2)

which is a direct counterpart of the internal gauge symmetry (1.3).
In the limit κ2 → 0 one gets the compactU(1) gauge model with a charge-1 Higgs field only,

the holon. The phase diagram of theQ = 1 compact Abelian Higgs model contains [4, 5] two
regions: the confinement “phase” (characterized by a low holon condensateb) at small hopping
parameterκ1) and the Higgs “phase” at largeκ1 (where the condensateb becomes large). Both
regions are analytically connected for strong enough Higgs selfcoupling, although a Kertész line [6]
physicallyseparates them also there. Aqualitativelysimilar picture (however with a true second
order phase transition) is realized [7] in the limit κ1→ 0 where one gets theQ= 2 compact Abelian
Higgs model in which the spinon-pair field plays the role of the sole Higgs field. Thus, we expect
that the phase diagram of the model (3.1) should contain all four phases depicted in Fig.1 in the
χ > 0 region.

Below we report our Monte Carlo investigation of the cA2HM which is still under way. To
scan the phase diagram we have simulated on a163 lattice, choosing three values of the gauge
couplings,β = 1.0, 1.5 and 2.0, for a huge grid ofκ1,2 hopping parameter pairs covering the
range1 0 < κ1,2 6 2.5. We are particularly interested in the strongly coupled case,β ' 1.

The compactness of the gauge field guarantees the presence of instanton–like magnetic mono-
poles. An elementary monopole is a source ofFmon= 2π units of magnetic flux associated with the
internal gauge fieldθ . Due to the matter fields two types of topologically stable vortices exist. The
magnetic flux quanta of the vortices corresponding to the holon and the spinon-pair “Higgs” fields
areFvort

1 = 2π andFvort
2 = π, respectively. Since the magnetic flux is conserved, one monopole is

simultaneously a source of one holon vortex and two spinon-pair vortices.
The densities of the three topological defects are logarithmically plotted in Fig.2 over the

(κ1,κ2) plane for a strong gauge couplingβ = 1. With increasing hopping parameters the mono-
pole density gets suppressed. The density of the holon (spinon-pair) vortex becomes suppressed
with increasing holon (spinon-pair) hopping parameterκ1 (κ2), beyond a line in theκ1-κ2 plane.

1The actually relevant region of theκ1-κ2 plane depends onβ .
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Figure 2: The densities of the topological defects over the(κ1,κ2) plane atβ = 1.

The connectivity of the vortex clusters gives a clear view of the phase diagram of the model [5,
7, 6]. A Higgs condensate suppresses the proliferation of the corresponding vortices: they are pre-
vented to percolate over infinitely long distances. We show in Fig.3 the percolation probabilities
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Figure 3: The percolation probability of the infrared vortices and the phase diagram of the system atβ = 1.

dropping to zero (extracted from the cluster correlation functions) and the corresponding phase
diagram (classified according to Ref. [3], see Fig.1). To identify the phases, we measured the
average plaquette and both link contributions of the action and their susceptibilities (3.1), respec-
tively. Some examples are shown in Fig4. From a preliminary finite size analysis from123 to 323
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Figure 4: Examples of thermodynamic behaviour at variousκ1, κ2 andβ = 1.

we found: i) Hint for a first order transition between III and IV in the crossing region of the two
percolation lines at strong gauge coupling, ii) No transition along the red (vertical) line for smallκ2

in agreement with the limitκ2→ 0, iii) Signals for thermodynamic transitions along the remaining
transitions lines (second order along the horizontal parts of the blue line).
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4. Summary

We have observed two transitions associated with the patterns of vortex percolation in the
Abelian two–Higgs model of high-Tc superconductivity. These transition lines are roughly parallel
to the corresponding hopping parameter axesκi , almost perfectly parallel at weak gauge coupling
(β = 2). The crossing in some region of finite (κ1,κ2) gets new features at strong couplingβ = 1.
The Fermi liquid, the spin gap, the superconductor and the strange metallic phases have been
identified in a wide region of parameters of this model. The percolation transitions are accompanied
with ordinary phase transitions except at smallκ1 below the crossing region of the two transition
lines. First hints for a changing order along the thermodynamic transition lines are found, and the
joint transition in the crossing region seems to be first order. Further studies are underway to fortify
our findings.

More complex Higgs sector will be necessary to build more realistic effective models repro-
ducing the confinement mechanism of gluodynamics in the sense of Ref. [7]. The spin-charge
separation idea of the high-Tc superconductivity should further be extended to gluodynamics to
reformulate it in terms of condensed matter systems [8].
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