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1. Introduction

One of the most essential problems of color confinement in QCD is to explain the mechanism
of the flux squeezing of non-Abelian electric fields between a pair of static quark and antiquark. In
SU(2) QCD, (E?)? or ,/(E?)? is expected to be squeezed to reproduce the linear static potential.
Numerically the expected squeezing of the gauge-invariant combination of the electric field was
observed beautifully in latticBU(2) QCD [2].

Thirty years ago, 'tHooft3] and Mandelstamd] conjectured that the dual Meissner effect is
the color confinement mechanism of QCD. However what causes the dual Meissner effect and how
to treat the non-Abelian property were not clarified. An interesting idea is to utilize a topological
monopole like the 'tHooft-Polyakov monopolB, [6] found in SU(2) QCD with an adjoint Higgs
field ¢. A topological monopole has a bare magnetic charge satisfying the Dirac quantization
condition with a bare electric charge. An important quantity is a 'tHooft Abelian-like field strength

fuy = naFﬁv+£abcna(D“n)b(Dvn)°, (1.1)

wheren? is a unit vector in color space transforming as an adjoint representatio(D@,m()ib isa
covariant derivative. I8U(2) QCD with a Higgs fieldg? is adopted as?, since there is a classical
monopole solution corresponding to the choice.

However one may choose any adjoint operatorrfoto discuss a topological monopol€] [
in quantum field theory. This observation is important in real QCD without a Higgs field. We can
discuss a topological monopole in termsm3fwhich is constructed in terms of gluon fields. A
monopole picture can be seen more clearly if we project fursi#B) QCD to an AbeliarJ (1)2
theory by a partial gauge fixing[. After the Abelian projection, we have an Abeliai{1)? theory
with Abelian electric and magnetic charges. It is conjectured in Rpthpat the condensation of
the Abelian monopoles causes the dual Meissner effect explaining the color confinement. Howevel
there is a serious problem in this scenario. Namely there exist infinite ways of chadsarg
in other words infinite possible Abelian projections. Moreover, the monopole condensation, if
happens, can explain only the squeezing of an Abelian-like electric fijeldefined in Eq.1.1).

How good an approximation it is to the real and expected flux squeeziqgj(&fﬂ)2 depends
strongly on the choice afé.

An Abelian projection adopting a special gauge called Maximally Abelian gauge (8A) [
9,1Q] is found to give us interesting resulid] [12, [13] supporting importance of the Abelian
monopoles. In this case, the Abelian electric field can approximate very well the long-range behav-
ior of the non-Abelian one, since other components are suppressed. However such beautiful results
are not seen in other general gauges than the MA gauge.

It is the purpose of this note and the separate refdjrto] show numerically that the dual
Meissner effect occurs in a gauge-invariant way with the use of a gauge-invariant Abelian-like field
strength and a monopole-like quantity. We do not need any Abelian projection nor any gauge-
fixing. In this note we explain the theoretical background of our idea and show most of numerical
results in the separate repat}.|

296/2



Gauge invariant ‘'monopoles’ and color confinement mechanism Tsuneo Suzuki

2. Abelian-like field strength

We define an Abelian-like field strength:

—

fuv(x) = ﬁuv(x> ) FW(X), (2.1)

where the summation over andv is not taken. fi,, is a unit vector in color space transforming
as an adjoint representation in SU(2). Note thatis not a simple Lorentz tensor.
Explicitly we adopt the following unit vector in color space®d(2) QCD [14,15,16]:

Ny (X) = &u Py () , (2.2)

a1 (FA ()2

whereg,,, is an antisymmetric tensor with the sign conventin, = 1. The opposite sign con-
vention can be adopted which means the existence of the sign ambiguity. The continuity could
determine the relative sigrj, is a non-Abelian field strength with a color chaeand no sum-
mation is taken with respect @ andv in Eq.(2.2). This choice is unique in a sense that 2dl)
is just equal to the gauge-invariant absolute value of the non-Abelian field strength itself except for
the sign inSU(2) QCD. Actually an electric field componef defined byf, is —,/(E?)? the
squeezing of which is to be explained.

A gauge-invariant monopole-like quantity is defined from the violation of the Bianchi identity:

1
Ky (X) = STTsuvade faB(x). (2.3)

This is conserved but is not a simple Lorentz vector. Hereafter we call the monopole-like quantity
simply as 'monopole’. We get from EQ.Q)

ATIK, (2.4)
—4T1K,, (2.5)

ixE+d4
1.

oL o
I

where

E=(—/ED2—/ (B2 -\ /(E9?). (2.6)
B = <\/(B§)2,—\/(Bg)2,\/(Bg)2). 2.7)

Note that the magnetic charge defined in Ed)Y does not satisfy the Dirac quantization condition
with respect to bare charges contrary to the usual case of a magnetic charge defined in terms of a
'tHooft field strength.

lwe used a little different Abelian-like field strength with an additional term as in 'tHooft field strength. However
the additional term is not essential in the following discussions, since we are not dealing with a topological monopole.
Hence we adopt the above definitigh1) for simplicity.

296/3



Gauge invariant ‘'monopoles’ and color confinement mechanism Tsuneo Suzuki

3. 'Monopole’ on the lattice

Now we go to a lattice QCD framework. A non-Abelian field strenggh(s) is given by a
1 x 1 plaquette variable defined by a path-ordered product of four non-Abelian link matrices on the
lattice:

U (s) = exp(iFuy(9) =Ug, () +iUS, ()0

The unit vector in color space is

N (s) = 6‘”%, (3.1)
1- (UBV(S))Z

and the Abelian-like field strength is written similarly as in 2c1j
fﬂv(s) = nﬁv(s)Fﬁv(S)- (3.2)

This definition is explicitly gauge-invariant.
We define a gauge-invariant lattice 'monopole’ in the same way as i2 B.(

1 A
Ky (s) = QT‘EWGBAV fop(s+ 1), (3.3)

which satisfies) k,(s) = 0. Ay, (4)) is a lattice forward (backward) derivative. Note that this
'monopole’ is gauge-invariant and conserved but is not integer. In the separate tpatyill see

that the electric field /(E2)? between a static quark pair is actually squeezed due to the solenoidal
'monopole current’. The dual Meissner effect can be seen in a gauge-invariant way.

4. Comparison with Abelian monopoles after Abelian projections

Here we compare our gauge-invariant ‘'monopole’ with a (topological) monopole after an
Abelian projection. In the latter case, an Abelian link variaﬁﬁé’(s) is defined by a phase of
the diagonal part of a non-Abelian link field after a gauge fixing. An Abelian field str@;ﬁi(s)
is defined a®)\'(s) = 6,F(s) + 6,7 (s+ (1) — 6,7 (s+ ) — 6/"(s). An Abelian monopole is defined
as [17]

1 N
KaP(s) = arEuvaphy 6 (s+ ). (4.1)
This is conserved and takes an integer number. Namely it is a topological monopole. It is known
that, if we perform the MA gauge fixing whergs , Tr[U, (s)o3U[j(s)03] is maximized, we get
interesting results called as monopole dominaiick 12, 13]. However, if we adopt a gauge-
fixing diagonalizingF,,(s) (F,, gauge), such interesting results are not sddh [The F,, gauge
fixing on the lattice is defined in such a wayldgs)U,(s+ 1)U (s+2)U(s) is diagonalized.

We show numerical results of the correlati@(s) between the 'monopole’ and Abelian pro-

jected monopoles in Fid.
[k (0)]Ik, (1))

0= Teronikon - 4.2
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Figure 1: Correlation of the 'monopole’ with Abelian projected monopoles in MA gauge and F12 gauge.

The above two kinds of Abelian monopoles are investigated. One of them is a monopole in the MA
gauge fixing. It is interesting that the correlation is very strong. On the other hand the correlation
is very weak between the gauge-invariant ’'monopole’ and an Abelian monopolefip,thauge.

Note that the Abelian-like field strength E2.1) is reduced to an Abelian one if off-diagonal
components are negligible. This occurs in the MA gauge and in the maximally Abelian Wilson
loop gauge/18] where almost the same fine results as in the MA gauge are observed. In these
cases, we can adoff, = (0,0,1), since only the diagonal component exists. Hence the gauge-
invariant results we are going to show in the repattdould explain why only restricted Abelian
projection schemes like the MA gauge look nice among infinite possible candidates. In the case of
theF,, gauge, such a reduction does not occur.

5. Conclusion

We have defined a gauge-invariant monopole-like quantity by using an Abelian-like field
strength on the lattice. This current is not a simple Lorentz vector and does not take an integer
number. We have compared the gauge-invariant ‘'monopole’ with Abelian topological monopoles
appearing after Abelian projections. A strong correlation is observed between the gauge-invariant
monopole and the Abelian monopole in the MA gauge, whereas no correlation is seen with the
Abelian monopole irF;, gauge. When the unit-vectdy,, in color space is well approximated as
fuv = (0,0,1), our gauge-invariant Abelian-like field strength becomes Abelian. Such a situation
is expected in the MA gauge and the maximally Abelian Wilson loop géai&ernhere dominance
of the topological Abelian monopole is seen.

In Ref. [1] we will show numerically that the dual Meissner effect occurs in a gauge-invariant
way with the use of a gauge-invariant Abelian-like field strength and 'monopoles’. We do not need
any Abelian projection nor any gauge-fixing.
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