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1. Motivation

The low energy regime of Quantum Chromodynamics (QCD) exhibits a rich and interesting
phenomenology, including the UA(1) axial anomaly, chiral symmetry breaking and the topological
properties of the theory. There are a number of detailed predictions of the properties of these low-
lying modes, such as the existence of an Index Theorem [1, 2] and the distribution of the first few
eigenvalues in fixed topological charge sectors [3, 4, 5, 6, 7, 8].

Any correct discretization of QCD must agree with those predictions close enough to the
continuum limit. Here we show that this is already the case for improved staggered quarks at the
lattice spacings typically used in present-day simulations. In particular, we show that improved
staggered fermions do respond correctly to the gluonic topological charge, and discuss why some
confusion on this issue exists in the literature. Here we expand the work in [9, 10]. For more
detailed results see [11]. Related work has been presented in [12, 13].

2. Improved Staggered Dirac Operators

The massless, gauge-invariant, ONE-LINK staggered Dirac operator on a d = 4 dimensional
Euclidean lattice with spacing a is

/D(x,y) =
1

2au0

d

∑
µ=1

ηµ(x)
[

Uµ(x)δx+µ̂,y−H.c.
]

, ην(x) = (−1)∑µ<ν xµ (2.1)

with u0 an optional tadpole-improvement factor given, in our case, by the fourth root of the mean
plaquette. /D is antihermitian and obeys a remnant of the continuum γ5 anticommutation relation,
{ /D,ε} = 0 , with ε(x) = (−1)∑d

µ=1 xµ . As in the continuum case, its spectrum is therefore purely
imaginary, with eigenvalues occurring in complex conjugate pairs, {±iλs, λs ∈ R} . The corre-
sponding action describes Nt = 4 “tastes” of fermions which interact via unphysical “taste break-
ing” interactions that vanish in the continuum limit as a2. In such limit there is an SU(Nt)⊗SU(Nt)

chiral symmetry, and the spectrum is therefore Nt-fold degenerate. There is also an exact Index
Theorem. At finite lattice spacing the chiral symmetry group is reduced to U(1)⊗U(1) and we do
not expect to see this picture, for example there will not be an exact Index Theorem anymore.

In addition to the ONE-LINK operator, we have also studied several improved staggered op-
erators, the so called ASQTAD, FAT7XASQ and HYP , designed to suppress the taste-changing
interactions [14, 15, 16].

3. Details of the Simulation

We use a quenched, SU(3) gluonic action that is both tree level Symanzik and tadpole im-
proved [17, 18, 19, 20, 21]. It differs from the one used by the MILC Collaboration [22] only in
small one loop radiative corrections. We have generated several ensembles of around 1000 config-
urations.

We measure the gluonic topological charge Q using two different cooling methods, to look for
consistency. We discard the configurations for which both methods disagree. In the a = 0.093 fm
ensemble fewer than 10% of the configurations have an ambiguous topological charge. For the
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Figure 1: The positive half of a typical eigenmode spectrum for a configuration of Q = 2, in lattice units.
The x-axis is eigenvalue number. The HYP operator gives results very similar to FAT7XASQ , and they are
not shown for clarity.

finest ensemble, a = 0.077 fm, this number goes down to around 2%. We stress that we only use
cooling to determine the topological charge. All the Dirac spectrum measurements are done on the
original thermalized (“hot”) configurations.

4. Index Theorem

We begin our analysis by qualitatively comparing the low-lying modes of various staggered
quark operators on a typical gauge background selected from those with Q = 2. In Fig. 1 we show
both the eigenvalue and the chirality of the first sixteen (positive) eigenmodes. Near the continuum
limit we expect to see first 2|Q|= 4 near-zero modes with their chirality renormalised slightly away
from unity. The remaining modes should have chirality near zero and divide into almost degenerate
quartets. The spectrum looks quite continuum-like for all Dirac operators and we see a clear Index
Theorem. For the improved operators we also see a very clear quadruple degeneracy in the non-
zero modes. The renormalisation of the chirality away from 1 is small for the improved Dirac
operators (around Z = 1.2), becoming as large as Z ≈ 4 for the ONE-LINK fermions. This result is
fairly typical of operator renormalisation for staggered quarks [23, 24, 25].

5. Comparison with Random Matrix Theory

The chiral symmetries of staggered quarks are more complicated than for continuum QCD.
At finite lattice spacing there are N2

t = 16 pion states, and only one of these becomes massless
in the chiral limit, the “Goldstone pion”, with mass MG. The 15 remaining states have masses
∼MNG arising from the taste breaking interactions. The (chirally extrapolated) masses are O(a2)

and therefore zero only in the continuum limit.
There are potentially two universal regions for different parameters of the system:

ε-regime: (ΛQCD)−1¿ L¿ (MNG)−1
, (5.1)

ε ′-regime: (MNG)−1¿ L¿ (MG)−1
. (5.2)

In the first one the chiral symmetries are as in the continuum, corresponding to an effective theory
of 16 massless pions. The low-lying non-zero modes have a near Nt-fold degeneracy, and follow the
distributions corresponding to continuum QCD (and chiral lattice fermions [26, 27, 28, 29, 30, 31]).
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At finite lattice spacing there is a second, ε ′-regime, corresponding to an effective theory with
a single massless pion. There is not even approximate restoration of the continuum symmetries,
and the associated RMT has only U(1)⊗U(1) chiral symmetry. The universal predictions for
the eigenvalues are therefore strikingly different from those for continuum QCD. In particular, the
predictions are the same for all sectors of topological charge [32]. Presumably it is this regime that
was studied in [33, 34, 35, 36, 37]. With the coarse lattices and unimproved gauge ensembles used
in these studies, they observed no sensitivity of the eigenvalue spectra to Q, leading to the incorrect
folklore that staggered quarks are “blind to the topology”. To see the continuum chiral symmetries,
there must be a sufficiently large mass gap between the heaviest pion and the lightest of the other
hadrons. This requires the use of improved gauge and fermion actions and a sufficiently small
lattice spacing. At coarse lattice spacings, with unimproved fermions, MNG ≈ ΛQCD and there will
be no ε-regime.

We separately fit the individual cumulative spectral densities to the predictions from RMT.
These one parameter fits yield a prediction for the chiral condensate. We show some examples of
the fits in Figs. 2. It is clear that the improved Dirac operators match the predictions of RMT very
closely over the full range of lattice spacings. By contrast, even at a = 0.077 fm the ONE-LINK

Dirac operator still shows significant discrepancies. The fits also show clearly the expected varia-
tion with topological charge. Each fit gives a value for the bare chiral condensate, and we find all
of them to be broadly consistent with each other.

6. Conclusions and Outlook

We have studied the low-lying eigenmodes for the staggered lattice Dirac operator, using a
range of improved and unimproved versions. The improved operators pass all the tests. In particu-
lar, and contrary to previous accepted wisdom, such fermions do respond exactly as expected to the
gluonic topological charge, and in a way identical to continuum QCD and other lattice formulations
of the Dirac operator.

We have seen that for improved operators the eigenvalue spectrum divides cleanly into near-
zero and non-zero modes. The near-zero modes are characterised by a uniformly high chirality,
with their relative number fixed by the Atiyah-Singer Index Theorem. The non-zero modes, by
contrast, have chirality that is near zero and they divide into near degenerate quartets. In addition,
the low-lying non-zero modes follow closely the universal distributions predicted by random matrix
theory.
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Figure 2: Comparison of the unfolded eigenvalue distribution with RMT for the lowest eigenvalue for
different topological charges. The lattice size is kept at aL≈ 1.5 fm

References

[1] M. Atiyah and I. Singer, Bull. Amer. Math. Soc. 69, 422 (1963).

[2] M. Atiyah and I. Singer, Ann. Math. 87, 596 (1968).

[3] H. Leutwyler and A. Smilga, Phys. Rev. D46, 5607 (1992).

[4] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A560, 306 (1993), [hep-th/9212088].

[5] P. H. Damgaard, Nucl. Phys. Proc. Suppl. 106, 29 (2002), [hep-lat/0110192].

[6] G. Akemann and P. H. Damgaard, Phys. Lett. B583, 199 (2004), [hep-th/0311171].

[7] S. M. Nishigaki, P. H. Damgaard and T. Wettig, Phys. Rev. D58, 087704 (1998), [hep-th/9803007].

[8] P. H. Damgaard and S. M. Nishigaki, Phys. Rev. D63, 045012 (2001), [hep-th/0006111], see
corrections at hep-th/0006111v2.

[9] E. Follana, A. Hart and C. T. H. Davies, Phys. Rev. Lett. 93, 241601 (2004), [hep-lat/0406010].

298 / 5



P
o
S
(
L
A
T
2
0
0
5
)
2
9
8

Index Theorem and Random Matrix Theory for Improved Staggered Quarks Eduardo Follana

[10] E. Follana, Nucl. Phys. Proc. Suppl. 140, 141 (2005), [hep-lat/0409062].

[11] E. Follana, A. Hart, C. T. H. Davies and Q. Mason, Phys. Rev. D 72, 054501 (2005),
[hep-lat/0507011].

[12] K. Y. Wong and R. M. Woloshyn, hep-lat/0407003.

[13] K. Y. Wong and R. M. Woloshyn, Phys. Rev. D71 (2005), [hep-lat/0412001].

[14] S. Naik, Nucl. Phys. B316, 238 (1989).

[15] G. P. Lepage, Phys. Rev. D59, 074502 (1999), [hep-lat/9809157].

[16] F. Knechtli and A. Hasenfratz, Phys. Rev. D63, 114502 (2001), [hep-lat/0012022].

[17] G. Curci, P. Menotti and G. Paffuti, Phys.Lett. B130, 205 (1983).

[18] Erratum:, G. Curci, P. Menotti and G. Paffuti, Phys.Lett. B135, 516 (1984).

[19] M. Luscher and P. Weisz, Commun. Math. Phys. 97, 59 (1985).

[20] Erratum:, M. Luscher and P. Weisz, Commun. Math. Phys. 98, 433 (1985).

[21] M. Alford, W. Dimm, G. Lepage, G. Hockney and P. Mackenzie, Phys. Lett. B361, 87 (1995),
[hep-lat/9507010].

[22] HPQCD, C. T. H. Davies et al., Phys. Rev. Lett. 92, 022001 (2004), [hep-lat/0304004].

[23] J. Hein, Q. Mason, G. Lepage and H. Trottier, Nucl. Phys. Proc. Suppl. 106 (2002), [hep-lat/0110045].

[24] H. Trottier, G. Lepage, P. Mackenzie, Q. Mason and M. Nobes, Nucl. Phys. Proc. Suppl. 106 (2002),
[hep-lat/0110147].

[25] W. Lee and S. Sharpe, Phys. Rev. D66, 114501 (2002), [hep-lat/0208018].

[26] R. G. Edwards, U. M. Heller, J. E. Kiskis and R. Narayanan, Phys. Rev. Lett. 82, 4188 (1999),
[hep-th/9902117].

[27] R. G. Edwards, U. M. Heller, J. E. Kiskis and R. Narayanan, Phys. Rev. D61, 074504 (2000),
[hep-lat/9910041].

[28] P. H. Damgaard, R. G. Edwards, U. M. Heller and R. Narayanan, Phys. Rev. D61, 094503 (2000),
[hep-lat/9907016].

[29] P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer and K. Holland, Nucl. Phys. B643, 280 (2002),
[hep-lat/0205010].

[30] W. Bietenholz, K. Jansen and S. Shcheredin, JHEP 07, 033 (2003), [hep-lat/0306022].

[31] L. Giusti, M. Luscher, P. Weisz and H. Wittig, JHEP 11, 023 (2003), [hep-lat/0309189].

[32] P. H. Damgaard, private communication, 2004.

[33] M. E. Berbenni-Bitsch, S. Meyer, A. Schafer, J. J. M. Verbaarschot and T. Wettig, Phys. Rev. Lett. 80,
1146 (1998), [hep-lat/9704018].

[34] P. H. Damgaard, U. M. Heller and A. Krasnitz, Phys. Lett. B445, 366 (1999), [hep-lat/9810060].

[35] M. Gockeler, H. Hehl, P. E. L. Rakow, A. Schafer and T. Wettig, Phys. Rev. D59, 094503 (1999),
[hep-lat/9811018].

[36] P. H. Damgaard, U. M. Heller, R. Niclasen and K. Rummukainen, Phys. Rev. D61, 014501 (2000),
[hep-lat/9907019].

[37] P. H. Damgaard, U. M. Heller, R. Niclasen and K. Rummukainen, Phys. Lett. B495, 263 (2000),
[hep-lat/0007041].

298 / 6


