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We investigate the color-Coulomb confinement scenario using a SU(3) lattice gauge simulation.

It is shown that the color-Coulomb heavy-quark potential, defined from the instantaneous part of

the gluon propagator in Coulomb gauge, behaves as a linearly rising potential at large distances,

and the resulting Coulomb string tension is greater than the Wilson-loop string tension. We study

also the behavior of the color-Coulomb instantaneous part in the QGP phase. It is found that the

linearity of the color-Coulomb instantaneous potential remains even at finite temperature.
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1. Introduction

Recently, the color confinement scenario in Coulomb gauge has been attracting many scien-
tists. Zwanziger [1] has discussed the color confinement mechanism in Coulomb gauge, which
can be a physical gauge as compared with Lorentz-covariant gauge, and through the studies of the
Coulomb gauge renormalization in Refs. [1, 2, 3], it has been reported that the time-time com-
ponent of the gluon propagatorg2D00, including the color-Coulomb instantaneous potential plus
the non-instantaneous vacuum polarization, is invariant under the renormalization. (Hereg is a
coupling constant of gauge field theory.) Furthermore, it has been pointed out in the recent work
by Zwanziger [4], an inequality,Vphys(R) ≤ Vcoul(R), whereVphys(R) means the physical heavy
quark potential andVcoul(R) the color-Coulomb instantaneous potential. This inequality tells that
if the physical potential is confining, then the Coulomb singlet potential is also confining. In-
deed, in theSU(2) numerical study by Cucchieri and Zwanziger [5], it has been found that the
transverse gluon propagatorDtr(~k) vanishes at~k = 0, whereas the instantaneous color-Coulomb
potentialD00(~k) is strongly enhanced at~k = 0. Moreover, Greensite, Olejnik and Zwanziger have
found in theSU(2) lattice simulation that the color-Coulomb potential defined by the partial-length
Polyakov line (PPL) correlator grows linearly at large distances [6, 7], which is deeply associated
with the enhancement ofD00 at~k = 0. The instantaneous part ofD00 may be managed with the
PPL correlator.

In this work, we study the long-range behavior of heavy quark potential in Coulomb gauge in
the quenchedSU(3) lattice QCD simulation with the PPL correlator. We investigate the behavior
of the color-Coulomb potential in the confinement and deconfinement phases. The most interesting
point is whether the color-Coulomb potential has a linearly rising feature at large quark separations.
In the deconfinement phase, we will find that the linearity of the instantaneous part is not lost. In
this report we will add the preliminary higher temperature results of the instantaneous part and
give an argument of the relationship between the color-Coulomb string tensions and the magnetic
scalings at finite temperature.

2. Measurement

A partial-length Polyakov line (PPL) is defined as [6, 7]

L(~x,nt) =
nt

∏
t=1

U0(~x, t), nt = 1,2, · · · ,Nt . (2.1)

HereU0(~x, t) = exp(iagA0(~x, t)) is aSU(3) link variable in the temporal direction anda, g, A0(~x, t)
andNt mean a lattice cutoff, a gauge coupling, a time component gauge field and a temporal lattice
size. A PPL correlator in the colorSU(3) singlet channel is given by

G(R,nt) =
1
3

〈
Tr[L(R,nt)L†(0,nt)]

〉
. (2.2)

whereR is |~x|. One can obtain a potential on the lattice from them,

V(R,nt) = log

[
G(R,nt)

G(R,nt +1)

]
. (2.3)
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In particular, with the smallest temporal lattice extensionnt = 1, we define

V(R,0) = − log[G(R,1)]. (2.4)

V(R,0) in Coulomb gauge corresponds to a color-Coulomb instantaneous potential,Vcoul(R). In
the practical nonperturbative numerical study, the instantaneous contribution has been managed
through V(R,0) [6, 7]; this also appears as the enhancement ofD00 at vanishing momentum [5].
TheV(R,nt) at nt → ∞ further corresponds to a physical potential,Vphys(R), which can be usu-
ally yielded from the Wilson loop calculation atnt → ∞. In addition, these two potentials obey
Zwanziger’s inequality,Vphys(R) ≤Vcoul(R) [4].

3. Numerical Results

We carry out theSU(3) lattice gauge simulation at quenched level to calculate the color-
Coulomb potential. The lattice configurations are generated by Heat-bath Monte-Carlo technique
with a plaquette Wilson gauge action, and in order to fix the gauge we adopt the iterative method.

3.1 Color-Coulombqq̄ potential

The left-hand side of Fig.1 shows the results of the color-Coulomb potentialV(R,0), obtained
by the PPL correlator withnt = 1. Those data are generated in the184 lattice simulation atβ =
5.85−6.00. To obtain a string tension, we assume the following fitting function as a function of
distanceR,

V(R,nt) = C+KR+A/R, A = −π/12, (3.1)

whereC is a constant andK corresponds to the string tension. ( The fittings work well;χ2/nd f ∼
O(1) for the fitting rangeR= 2−6.) It is found that the color-Coulomb potentialV(R,0), rises
linearly as the distanceR increases atβ = 5.85−6.00; it can be described with the linearly rising
function. The string tensions forβ = 5.85−6.00and the Wilson loop string tension [8] for β = 6.0
are summarized in TABLE1. The color-Coulomb string tension atβ = 6.0 is approximately 2-3
times larger than the Wilson loop string tension.

Because theV(R,nt) at nt → ∞ corresponds to a physical potential, one expects thatV(R,nt)
as T increases becomes consistent with the Wilson loop potentialVw(R). The nt dependence of
the color-Coulomb potential atβ = 6.0 is displayed in the right-hand side of Fig.1. (We use the
183×32 lattice and 600 configurations measured by every 100 sweeps.)V(R,T) may approach
Vw(R) asT increases. The inequality,Vw(phys)(R) ≤Vcoul(R) is also satisfied.

3.2 Color-Coulomb potentials at finite temperature

The finite temperature behavior of the color-Coulomb potential is shown in the left-hand side
of Fig. 2. This simulation is carried out on the243 × 6 lattice atβ = 6.11, corresponding to
T/Tc ∼ 1.50, whereT stands for a system temperature andTc the critical temperature of the QGP
phase transition. (The 300 configurations measured by every 100 steps are used here.) It is very
interesting that even at finite temperature,T/Tc ∼ 1.50, the color-Coulomb potentialV(R,0), is
surprisingly not screened and the linearly rising feature at large distances still exists. Fitting these
data with the function Eq. (3.1), we obtain that theK(β = 6.11,T/Tc ∼ 1.50) = 0.118(1), and we
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Table 1: The fitted results of the string tensions. TheK andσ are obtained from the singletV(R,0), and
theKw andσw mean the Wilson loop string tension atβ = 6.0 [8], not calculated here. We use the relation√

σ =
√

Ka−1 and the lattice cutoffs estimated from the Monte-Carlo renormalization analyses.

β K
√

σ [MeV] Kw
√

σw [MeV]

5.85 0.2291(22) 706(4)
5.90 0.1950(10) 716(4)
5.95 0.1726(6) 736(3)
6.00 0.1467(4) 740(3) 0.0513(25) [8] 470(46)
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Figure 1: Behavior of the color-Coulomb instantaneous heavyqq̄ potential in the confinement phase. Here
V(R,nt) andR have a non-dimensional lattice unit and for example the coupling constantβ = 6.0 corre-
sponds to the lattice cutoffa∼ 0.1 f m.

find that the
√

σ(β = 6.11,T/Tc ∼ 1.50) = 792(10)MeV, which is larger than the
√

σ(β = 6.0,T ∼
0) = 740(4)MeV listed in TABLE1. However, as the temporal extensionT increases, theV(R,nt)s
are screened at large distances,R & 1/T = 6 on this lattice at least, and they are qualitatively
consistent with the Polyakov line potential [9, 10].

Numerical results at higher temperature are also shown in the right-hand side of Fig.2. (The
100 configurations measured by every 100 steps are used here.) We find that, even atT/Tc = 5.0,
the color-Coulomb instantaneous part is a linearly rising potential at large distances. In Fig.3, the
temperature dependence of the color-Coulomb string tensions at higherT is shown and we did the
fitting analysis using a magnetic scaling,

√
σ/T ∼ g2(T) since the magnetic scaling dominates for

the high temperature QCD. As a result, the color-Coulomb string tension at finite temperature may
be described by the magnetic scaling.

4. Concluding remarks

We have studied the color-Coulomb potential defined with the partial-length Polyakov line
correlator by the quenchedSU(3) lattice gauge simulation. ThoseSU(3) results obtained in this
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Figure 2: Behavior of the color-Coulomb instantaneous heavyqq̄ potential in the deconfinement phase. In
the graph of the left-hand side the non-dimensional lattice unit is used.

1 2 4
T/Tc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
/σ

0.
5

c=1.64(2), 1/c=0.609(7)

Preliminary

T/σ0.5=c/g2(T) χ2/ndf=1.52

Figure 3: Temperature dependence of the color-Coulomb string tension in the deconfinement phase and the
fitting analysis by the magnetic scaling. Here we assumeT/

√
σ = c/g2(T) , whereg(T) is a two-loop QCD

running coupling constant.

study are qualitatively consistent with theSU(2) analyses carried out by Greensite, Olejnik and
Zwanziger [6, 7].

The color-Coulomb potentialV(R,0) in the confinement phase grows linearly at large dis-
tances; its string tension is approximately several times larger than that of the usual Wilson loop po-
tential. Moreover as the temporal extensionnt of the PPL correlator increases, the color-Coulomb
potential approaches asymptotically the usual Wilson loop potential.

On the other hand, the color-Coulomb potentialV(R,0) in the QCD deconfinement phase at
T/Tc ∼ 1.50, is also the linearly rising function at large distances; namely, it is not screened. The
color-Coulomb potential with the finite-temporal length in Coulomb gauge is screened sufficiently,
and finally it becomes comparable with the screened potentials obtained from the full-temporal
length Polyakov line correlator in Coulomb gauge.

It is important to use Coulomb gauge for the confinement scenario discussed in Refs. [1] and
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it is found that the color-Coulomb potential is a linearly confining potential by theSU(3) lattice
simulation used here as well as theSU(2) lattice calculation [6, 7].

An extensive numerical study of the color-dependent force between two quarks may be signif-
icant to understand the color confinement and multiquark hadrons, although we here focus on the
singlet channel forqq̄. The other color-dependent forces in Coulomb gauge are also calculated and
the results have been published in Ref. [11].
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