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1. Introduction

It is a well known fact, that the Polyakov loop correlator
〈
P(x)P†(y)

〉
can be used to measure

the static quark-antiquark potential and the correlator ofthree Polyakov loops tells us about the
baryon potential.

As McLerran and Svetitsky showed in [1], the expectation value of every combination of
Polyakov loops is related to the free energy of the appropriate configuration of quarks and anti-
quarks. Thus, it would be interesting to study the correlation of two Polyakov loops in order to
determine the diquark potential.

It has been conjectured that diquarks play an important rolein phenomenology, e.g. colour
superconductivity is motivated by diquark condensates andpentaquarks could be described by
using diquarks.

2. The diquark model

A single quark transforms as a triplet under SU(3) gauge transformations. Two quarks trans-
form as the tensor product of two triplet states, which can bedecomposed as[3]⊗ [3] = [3̄]⊕ [6].
The antisymmetric[3̄]-representation transforms in the same way as a single antiquark. This reduc-
tion of the effective color charge of the two quarks renders the bound state energetically preferable
and leads to an attractive force.

There has been a suggestion of how to measure the quark-quarkcorrelation by Jaffe in [2] that
has been followed up by other groups [3] [4]. In case of our study we built up our operators out
of Polyakov loops only, namly we measured the correlation between two Polyakov loops. This
method has the advantage that it is not necessary to fix the gauge. Furthermore we do not need a
third quark line like in Jaffe’s suggestion. For alternative approaches to measure the free energy
see also [5], [6] and [7].

3. Diquark free energy

On the lattice, the Polyakov loop expresses the propagationof a single heavy quark along a

closed loop in periodic imaginary time:P(x) = Tr

(
Nt

∏
k=1

Ut(x+kt̂)

)
.

McLerran and Svetitsky showed [1] that the free energy of a configuration ofn quarks andn
antiquarks at positionsx1, . . . ,xn andy1, . . . ,yn respectively is related to the expectation value of the
appropriate combination of Polyakov loops as

〈
P(x1) · · ·P(xn)P

†(y1) · · ·P
†(yn)

〉
= exp[−aNt(Fnq,n̄q̄−F00)] . (3.1)

Here,a is the lattice spacing,Nt is the lattice extension in the time direction andF00 is the free
energy of the vacuum without any quarks. Especially for a quark-antiquark pair, this equation
leads to the static quark-antiquark potential which is the free energy at zero temperature

〈
P(x)P†(y)

〉
= exp[−aNt(Fqq(|x−y|)−F00)] .
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From equation (3.1), one can construct the normalized free energy of a specific configuration,
i.e. the gain in the free energy of a finite configuration of quarks relative to a configuration where
all the quarks are infinitely separated.

F̂nq,n̄q̄ = (Fnq,n̄q̄−F00)− (n+n) · (Fq−F00)

= −
1

aNt
log

〈
P(x1) · · ·P(xn)P

†(y1) · · ·P
†(yn)

〉
+

n+n
aNt

log〈P(x)〉

= −
1

aNt
log

〈
P(x1) · · ·P(xn)P†(y1) · · ·P†(yn)

〉

〈P(x)〉n+n .

Especially for two quarks, this relation leads to the diquark free energy

F̂qq = −
1

aNt
log

〈P(x)P(y)〉

〈P(x)〉2 .

The single quark free energy of the vacuumFq−F00 is included into the operator in order to remove
the self energy of the two quarks.

4. The Polyakov loop in pure gauge theory
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Figure 1: quenched Polyakov loop density
distribution from a 64 lattice in the confine-
ment region

It is well known, that a pure SU(3) gauge theory ex-
hibits an additional Z(3) center symmetry. The action is
not changed if all the time links connecting two neighbor-
ing timeslices are multiplied by the same element of Z(3).
The Polyakov loop however does change under such a
transformation

P(x) → ei 2
3πn ·P(x) (n = 0,1,2).

This makes the Polyakov loop sensitive to the cen-
ter symmetry. Thus, in the quenched theory, it serves
as an order parameter for the spontaneous breakdown
of this symmetry, which is associated with the confine-
ment/deconfinement phase transition.

Since the update algorithm will generate configura-
tions from all three Z(3) sectors with equal probability,
the values are distributed symmetrically in all of the threesectors as can be seen in figure 1. Thus
the loops of the different Z(3) sectors will cancel out each other, which results in an exactly van-
ishing expectation value for the Polyakov loop. Therefore,in order to measure a non-vanishing
Polyakov loop, one has to break the center symmetry.

There have been some propositions how to break this symmetry. For example, one can take
|P(x)|, 3

√
Re[P(x)3], rotate all values around zero so that the phase of each loop lies in the range

from −π
3 to π

3 like in [7] or just ignore all loops which do not lie in the sector around the positive
real axis as has been done in [8]. But all these methods seem somehow arbitrary. This differs from
the case when dynamical fermions are included into the simulation. In the unquenched theory, the
fermion determinant explicitly breaks the center symmetry.
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5. Simulation details

In full QCD, the Polyakov loop does not serve as an order parameter any more, but equation
(3.1) still remains valid. Because of the exponential decay, it is an expensive task to determine
the Polyakov loop and its correlators accurately for large lattice extension in the time direction or
equivalently for low temperature. But the low temperature region is especially interesting. One
drawback of the dynamical staggered fermions in full QCD is the non-applicability of exponential
error reduction such as the Lüscher-Weisz multilevel algorithm [9]. Therefore, the lattices which
can be studied are restricted to small time extension.

We were able to study lattices with a time extension up toNt = 6 and a spatial extension of
Ns = 18. The first calculations were done on a 44 and a 64 lattice with the Wilson plaquette action
and 4 flavours of staggered fermions with a mass ofmqa = 0.05 in lattice units.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

4 4.5 5 5.5 6
β

F̂ q
q(

r
=

a)

Figure 2: qq free energy from a 44 lattice

With this data set, we calculated the di-
quark free energy at different distances as a
function ofβ. The result forr = a is shown
in figure 2. As can be seen from this figure,
there is a clear correlation between the two
Polyakov loops. The sharp jump atβ ≈ 5
corresponds to the confinement/deconfine-
ment phase transition.
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Figure 3: qq andqq free energy from a 64 lattice atβ =

5.14, the errors are smaller than the dots.

In order to determine the quark-quark
correlator for larger distances, we did the
same calculations on a 64 lattice atβ = 5.14
which is still in the confinement region and
corresponds to a lattice spacing ofa = 0.28
fm. The form of theqq free energy in com-
parison to the quark-antiquark potential is
shown in figure 3. One can see, that the free
energy falls off at shorter distances which
indicates an attractive force.

It is preferable to determine the form
of theqq free energy for larger separations.
Since the Polyakov loop decays exponen-
tially with Nt , as described by equation (3.1), we kept the temporal lattice extension fixed toNt = 6
and increased the spatial lattice size.

The following results were obtained from a second data set, which was generated using 2+1
staggered fermions with stout smeared links [10] and physical quark masses and the Symanzik tree
level improved gauge action on an 183 × 6 lattice. We used the finite temperature configurations
which were generated in [11].

Figure 4 shows the diquark free energy as a function of the distance between the Polyakov
loops and compare it with the quark-antiquark free energy. Note that our data sets correspond
to finite temperature samples withT = 0.96Tc and T = 1.14Tc. Similar to the quark-antiquark

PoS(LAT2005)310

310 / 4310/4

P
o
S
(
L
A
T
2
0
0
5
)
3
1
0



Nonperturbative investigation of the diquark potential Markus Mechtel

-500

-400

-300

-200

-100

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F̂
[M

eV
]

r [fm]

F̂qq

F̂qq
-500

-400

-300

-200

-100

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

F̂
[M

eV
]

r [fm]

F̂qq

F̂qq

Figure 4: quark-quark free energy compared with the quark-antiquarkfree energy forTTc
= 0.96 (left) and

T
Tc

= 1.14 (right). In the left plot, a box-averaging has been used for r > 0.5 fm to reduce the errors. The
boxes were smaller than 0.04 fm. In the right plot, the errorsare smaller than the dots.

attraction, there is an attraction between two quarks. The quark-antiquark attraction is significantly
stronger than the quark-quark attraction. For our temperatures and forr > 0.8 fm both theqq and
theqq signal are compatible with zero.

In agreement with the results of a calculation in the quenched theory presented in [12] [7], we
see a flattening of theqq free energy aboveTc which becomes constant at about the same distance.
We also see a flattening belowTc, whereas in the quenched calculations, neither theqq nor theqq
free energy seem to approach a constant value belowTc.

6. Conclusions

We see a clear signal for a Polyakov-Polyakov loop correlation in full QCD without any need
to fix the gauge. The diquark free energy has a similar form as the quark-antiquark free energy.
This is a sign for an attractive force between two quarks, butit is weaker than the attraction between
a quark and an antiquark.

Accurately calculating the Polyakov loop expectation value is still an expensive task. In par-
ticular, the investigation of zero temperature lattices isrestricted by the exponential decay of the
Polyakov loop. As a consequence, it is not yet clear, how thisPolyakov-Polyakov correlation can
be determined in the limitT → 0, which is of physical interest.
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