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Substituting Skyrmion for nucleon, one can potentially see — in real time — how the monopole

is catalysing the proton (or neutron) decay, and even obtain a plausible estimate for catalysis

cross-section. Here we discuss the key aspects of a practical implementation of such approach

and demonstrate how one can overcome the main technical problems: Gauss constraint violation

and reflections at the boundaries.
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1. Introduction

The monopole catalysis of proton decay [1, 2] is a complicated process involving several
different physical scales. Although the physics of how fermions interact with the monopole is
rather well understood, the net proton decay cross-section remains unknown, mainly because the
proton decay actually happens via a combination of quite different physical mechanisms. At first,
spatially separated monopole and proton interact at relatively large distances; then, the monopole
starts to interact with individual quark states inside the proton, whose internal structure is defined
by non-perturbative QCD phenomena.

An interesting possibility to study both kinds of processes is provided [3] by the Skyrme theory
[4]. However, even though the monopole catalysis of the Skyrmion decay is essentially a classical
process, its cross-section is also not known. Recently it has been suggested [5, 6] to study this
process in a system of the Skyrmion interacting with the ’t Hooft-Polyakov monopole [7, 8]. Since
the latter is a spatially extended object, this makes the model free from singularities and greatly
simplifies its numerical study. In the papers [5, 6], the spherically-symmetric monopole-Skyrmion
geometry has been comprehensively studied in quasistatic limit. In particular, the decay path of
the Skyrmion has been identified, and it has been shown that nothing prevents the Skyrmion from
promptly losing almost all of its energy in the monopole background.

The natural next step is to study the classical dynamics of the model suggested in [5, 6]. In
this talk we discuss the main technical aspects of such a study, while the physical results will be
published elsewhere [10]. In particular, we concentrate on a problem of gauge invariance violation
in real-time classical simulations.

2. The model

The model1 consists of the Skyrme field U coupled to two gauge fields Aµ (group SU(2)L)
and Bµ (group SU(2)R). The Higgs sector has two Georgi-Glashow Higgs fields ΦA and ΦB which
break the SU(2)L and SU(2)R symmetries down to U(1)L and U(1)R, respectively, and a third Higgs
field Ψ which breaks the axial subgroup of the remaining U(1)L ×U(1)R. These requirements
fix the scalar field group representations completely: U ∈ SU(2) , U,Ψ : (2, 2̄), ΦA : (3,1),
ΦB : (1,3).

The action for the model is

S =
∫

d4x

[

−
1

2g2 Tr(F2
µν)−

1
2g2 Tr(G2

µν)

]

−

∫

d4x

[

1
2

Tr(DµΦA)2 +
1
2

Tr(DµΦB)2
]

−

∫

d4x

[

λ
4

(

1
2

Tr(Φ2
A)+ v2

)2

+
λ
4

(

1
2

Tr(Φ2
B)+ v2

)2
]

+
∫

d4x

[

1
2

Tr(DµΨ†DµΨ)+
τ
4

(

1
2

Tr(Ψ†Ψ)−ζ 2
)2

]

1For a detailed discussion of the structure and the properties of the model see the Refs. [5, 6].
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+
∫

d4x

[

−
F2

π
16

Tr(U†DµU)2 +
1

32e2 Tr([U†DµU,U†DνU ]2)

]

+ ΓWZW (2.1)

Here Fµν and Gµν are the field strengths of Aµ and Bµ , the fields ΦA and ΦB are 2× 2 matrices
from the algebras of SU(2)L and SU(2)R, respectively,

DµU = ∂µU +AµU −UBµ

DµΦA = ∂µΦA +[Aµ ,ΦA]

DµΦB = ∂µΦB +[Bµ ,ΦB] (2.2)

and Fπ and e are the pion decay constant and the Skyrme constant. The new Higgs field Ψ is a
2×2 complex matrix with covariant derivative identical to that of the Skyrme field,

DµΨ = ∂µΨ+AµΨ−ΨBµ

Finally, the Wess–Zumino–Witten term ΓWZW can be safely ignored [5] in what follows.
The most general spherically symmetric Ansatz consistent with the symmetries [5, 6] of the

action (2.1) is

A0 = −B0 = −
i
2

(

a0(r)
r

)

x̂ ·~σ

Ai = −
i
2

[(

a1(r)−1
r

)

εi jkσ jx̂k +

(

a2(r)
r

)

(σi − x̂ix̂ ·~σ)+

(

a3(r)
r

)

x̂ix̂ ·~σ
]

Bi = −
i
2

[(

a1(r)−1
r

)

εi jkσ jx̂k −

(

a2(r)
r

)

(σi − x̂ix̂ ·~σ)−

(

a3(r)
r

)

x̂ix̂ ·~σ
]

ΦA = ΦB = ivh(r)x̂ ·~σ
U = 1Icos f (r)+ ix̂ ·~σ sin f (r) , Ψ = ζ [ih1(r)x̂.σ +h2(r)1I] (2.3)

where x̂ is the unit radius-vector.
Substituting the ansatz (2.3) into (2.1) and using the A0 = B0 = 0 gauge to get the proper

Hamilton real-time evolution, one obtains spherically-symmetric action which remains invariant to
the following static gauge transformations which are the remains of the axial U(1):

h2 + ih1 → (h2 + ih1)e
iα(r)

a1 + ia2 → (a1 + ia2)e
iα(r)

a3 → a3 + r∂rα(r)

f → f +α(r) (2.4)

(note that h2 + ih1 rotates identically to ei f , once the fields Ψ and U are in the same group represen-
tation). This remaining gauge invariance becomes a major obstacle in real-time simulations (see
below).

The classical equations of motion can be obtained from the spherically-symmetric action by
the standard variational procedure. Of particular importance for what follows is the Gauss con-
straint corresponding to variation over a0:

∆ =−
1

2g2

[

∂rȧ3 +
ȧ3

r

]

+
a1ȧ2 −a2ȧ1

g2r
+

[

F2
π
8

r2 +
1

8e2 (a1 sin f −a2 cos f )2
]

ḟ
r
−ζ 2r(h1ḣ2−h2ḣ1) = 0

(2.5)
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The constraint (2.5) is preserved by the equations of motion as long as their gauge invariance is not
violated.

3. Numerical study

In the A0 = B0 = 0 gauge the classical equations of motion obtainable from the action (2.1)
represent a system of 2nd-order hyperbolic partial differential equations in (1+1) dimensions which
can be solved numerically by e.g. a staggered leapfrog scheme. Choosing different initial config-
urations, one can study several physically interesting cases of the Skyrmion decay. For example,
starting from a normal vacuum Skyrme solution (so-called “bare” Skyrmion, see [5, 6]), one can
simulate the decay of a physical nucleon. By choosing the initial profile for f (r) corresponding
to the “thin” Skyrmion (a static solution [5, 6] with unit baryon charge and minimal energy in the
monopole background), it becomes possible to check [10] how close is its actual decay path to the
quasistatic paths found in the Refs.[5, 6]. However, any such study is facing two serious difficulties
related to the lack of gauge-invariant lattice action for the model and the need for fully absorbing
boundary conditions.

3.1 Lattice action

To preserve the physical structure of continuum theory, its symmetries must be retained in
the discretised lattice version, and, in particular, the symmetries to local gauge transformations.
Unfortunately, we are not aware of any gauge-invariant lattice action for gauged Skyrme mod-
els, including the model used in the present study. The use of gauge-noninvariant lattice action,
generally speaking, results in domination of nonphysical states in generated field configurations.
However, in real-time classical evolution the mixing of physical and nonphysical states can be
rather well controlled.

Since the only reason for gauge invariance violation are the discretisation errors, for reason-
ably small lattice spacing the magnitude of the violation remains rather small. Assuming that the
evolution starts from a physical state which obeys the Gauss constraint (2.5), the system initially
stays close to the physical manifold and can be projected back onto it after certain amount of time.
Physically, the projection procedure involves the minimisation of the quantity

Q =
∫

dx ∆2 (3.1)

where ∆ is the constraint value (the left-hand side of (2.5)). Generally speaking, any minimisation
technique can be used here, with no specific approach favoured by physical reasons as long as the
accumulated constraint violation remains small. In the present study we use a variation [9] of the
steepest descent method, also called sometimes as the Langevin cooling.

It is worth noting that in real-time classical simulations the projection procedure is inevitable
[9] even with a perfectly gauge-invariant lattice action. The reason is that the gauge invariance will
inevitably be broken by computer roundoff errors. Even though the latter remain tiny (O(10−15)

for the standard double precision), the constraint violation accumulates in the course of evolution,
which results in exponential divergency of constraints. To remain close to the physical manifold
for indefinite period of time, one still has to periodically project the system onto it, although for
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Time evolution of Gauss constraint for κ1=0.001, κ2=0.1

total energy (right scale)
constraint violation (left scale)

Figure 1: Constraint violation inevitably breaks stability of the numerical evolution, with the Gauss con-
straint and total energy exploding simultaneously after the former exceeds a certain critical level. Of course,
the numerical scheme also violates the energy conservation (as demonstrated by the small oscillations of en-
ergy), but in non-gauge models [11] this doesn’t break the stability. Notations: κ1 = F2

π /8v2, κ2 = g2/64e2;
for dimensionless units used see Ref.[6].

gauge-invariant lattice schemes the constraint violation can be maintained at dramatically lower
level.

Failure to keep constraint violation under control inevitably leads to an explosion of the nu-
merical scheme, whether a gauge-invariant one or not. For the model at hand this is demonstrated
at the Figure 1, where the system energy is plotted against the time along with the magnitude of
the volume-averaged constraint value < ∆ >vol.

3.2 Absorption at the boundaries

In physical case, the energy of the decaying proton is released to the spatial infinity. In nu-
merical studies, this energy should be either absorbed at the boundaries or allowed to pass through
the boundaries. For massless waves this can be easily implemented by the standard outgoing-wave
boundary conditions. However, in more realistic cases, including the present study, it turns out to
be very difficult to achieve full absorption at the boundaries, simply because any modification of
the theory near the boundaries introduces spatial inhomogeneities which scatter the waves back
to centre. Fortunately, in (1+1)-dimensional case it is still possible to overcome the problem by
brute force, taking a sufficiently large physical volume, so that the reflected wave wouldn’t come
back to the origin before the end of the run, but this obviously cannot be done for higher spatial
dimensions.
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4. Conclusions

Despite the problems discussed above, the monopole catalysis of Skyrmion decay can be suc-
cessively studied [10] in the spherically-symmetric case where one can determine the decay time
of the Skyrmion when it is exactly overlapped with the monopole. In two spatial dimensions, one
can study Skyrmion-monopole collisions at zero impact parameter; however, the catalysis cross-
section can be established only by studying full-3D geometry. This is a major challenge, taking
into account that the Skyrme dynamics is known [12]–[14] to become unstable already in 2D simu-
lations, and a number of similar problems such as full numerical study of Skyrmion-anti-Skyrmion
annihilation remain so far unsolved.
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