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stability and the scaling violation of the static quark paigl. We find that the the topology
change is indeed suppressed when the pararaéseof order one. We also find that the scaling
violation in the static quark potential remain reasonabtakin the parameter range of our study.
Our study is done at the inverse lattice spaa@ng = 1.4-2.5 GeV with the lattice siZe= 1.0—
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1. Introduction

The admissibility condition of the gauge fields on the l&{it, 2]
[ 1-Puw(X)|| <& forallx, u,v, (1.2)

guarantees the locality and the uniqueness of the indexeaftbrlap-Dirac operator. [3, 4]. As an
example, the gauge action which restricts the gauge fieldtisfg the bound (1.1)
1-ReTP,y(X)/3
S8 ; w¥)/3
— (1-ReTPy(x)/3)/¢

(1.2)

was proposed by Luescher [1]. This action may be useful fob@ithulations in two reasons: (1)
it may serve to efficiently collect gauge configurations vited topologyQ # 0 in thee-regime,
(2) it may give a possibility to reduce the numerical costyiamical overlap fermions with fewer
low-lying modes ofHy and less frequent topology change. In fact, this action leas Iproven to
be useful for the massive Schwinger model for stabiliziregtdpological charge and for improving
the chiral behavior of the domain wall fermions [5, 6]. Alsothe four-dimensional quenched
QCD, the good stability of the topological charge has beexenked with some reasonable choices
of parameters [7, 8, 9]. See also [10].

In this report we present our quenched study of the topologgerving gauge action (1.2) on
the stability of the topology and the scaling. Studies oralemode distribution in quenched and
dynamical QCD are reported by Matsufuru [11].

2. Lattice setup

In our study, we take three values ofel(= 0, 2/3, and 1) with three lattice sizes*126%, and
20* and four lattice spacings in the range! = 1.4-2.5 GeV. Here, /& = 0 corresponds to the
conventional plaguette action andel= 2/3 is the boundary, below which, all gauge configurations
are allowed when the gauge groupS8(3). Link variables are generated by the standard hybrid
Monte Carlo algorithm with At = 0.01-0.02 andNnhgs = 20—40, whereNngs is the number of
molecular dynamics steps ald denotes its step-size. We accumulated at least 2,000treg
for thermalization before measuring observables. We romettthe plaquette values of the gauge
fields, but we did observe any case where the admissibilitdition is violated through the hybrid
Monte Carlo updates.

3. Stability of the topological charge

In order to measure the topological charge, we develope@vaoeling method, in which we
carry out the hybrid Monte Carlo simulation using the toggi@onserving action with an expo-
nentially increasing coupling = Bcool @nd an exponentially decreasing step &izeas functions of
trajectoryn; . After 50—200 steps, the gauge fields are expected to bectdolen close to the clas-
sical background in each topological sector. In fact, thengetrical definition of the topological

charge [12]
1

Queo= 3272

> eHPIReTr(Puy(X)Poo (X)) (3.1)
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Figure 1: Stability of the topological charge (3.1) for each parame&t. Results are plotted as a function
of lattice spacing squared. Three values &f are distinguished by lines: 0 (dotted), 2/3 (dashed), idyol
Circles, squares, and up-triangles correspond to latites 42, 16 and 20, respectively. The down-triangles
are from [8].

of these “cooled” configurations gives numbers close to tayar.
Figure 1 shows the stability of the topological charge defiag
Staly = (3.2)
where Tpjaq is the autocorrelation time of the plaquette, measured bymbthod in Appendix E
of [13], Nyj denotes the number of trajectories arf@ % the number of topology changes. Since
the topological charge is measured every 10-20 trajestoBtaly gives only an upper limit. Our

results show that the topological charge becomes moreediabhigher ¥ ¢, smallerL and smaller
a

4. Static quark potential

We calculate the static quark poten¥&r) from the Wilson loop&V(F,t) for every 20 trajec-
tories. The spatial sideis taken to be in 6 different directions of the 3-dimensiamat vectors:
=(1,0,0), (1,1,0), (2,1,0), (1,1,1), (2,1,1), (2,2,1). védculate the Sommer scalesandr defined
asraF (ro) = 1.65 andr2F (r¢) = 0.65, respectively [14, 15F is the force obtained from the static
guark potential. We choose@= 0 configuration for the initial condition of HMC steps and dut n
take care of the topological charge hysteresis assuminghiaopology of the gauge fields would
not affect the Wilson loops if they are small enough.

Figure 2 shows the scaling of/ro. One can see that they agree well with the results with the
plaquette action and its continuum limit [15] in the regi@riro)? < 0.08. Also, as seen in Figure 3
for long distances, the quark potential itS@lff) = ro(V (F) —V (r¢)) does show a good agreement
with that in the continuum limit obtained with the plaquedietion [15]. HereV/ (r¢) is measured
using an interpolation polynomial of order 5. For short @mtes, they show 10-20% deviations
due to the violation of the rotational symmetry but the dipamcies are comparable to those with
the plaquette action.
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Figure 2: Scaling ofr¢/ro. Squares and triangles are data fge &= 2/3 and for 1, respectively. Open
circles are the result with the plaquette action in [15],levktie filled circle denotes their continuum limit.
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Figure 3: Left: heavy quark potential g8 = 1.3, 1/ = 1.0 on a 12 lattice. Dashed line shows the
continuum limit obtained by an interpolation from the reéfl [15]. Different symbols show th¥ (r)’s
with different orientations parallel td's. Right: (V(F) — Veont(F))/Veont(F), WhereVeondF) represents the
continuum limit. The error o@cont(?) is ignored € 1%).

We conclude that the heavy quark potential for the admisgjblige fields is quite similar with
that of the plaguette action and no serious inconsistentyedound.

5. Perturbative renor malization of the coupling

Ellis and Martinelli computed the two-loop correctionshe gauge coupling for general gauge
actions which can be written by the plaquette [16]. Usingrtf@mula, the renormalized gauge
coupinggw in the so-called Manton scheme is expressed by the bareiocguplas

1 1
= S+ AL+ A, (5.1)
oh(l/a) & °
where (Ag,A2) = (—0.2083-0.03056), (0.34722,0.04783), and (0.625,0.10276) for Y& = 0,
2/3, and 1, respectively. In Figure 4 we plot the inverse seglaoupling in the Manton scheme at

a reference scalg = 5/rp as a function of the lattice spacing. Here, we use the oneflmonula
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Figure4: 1/g%(5/ro) in the Manton scheme as a function of lattice spacing squéRegults for various
1/ andrg are plotted. The bare couplingg% is also shown by open symbols for comparison.

in (5.1) for the change of scheme and two-loop renormabnagiroup equation for the evolution
to the reference scale. We find that the renormalized cayitinvarious values of A shows a
good agreement, which means that the change/ ®idwell described by the perturbation theory.
One can also see that the scaling violation is small for themeaalized coupling. However, we
note that the two-loop result gives larger corrections éogér 1/ so that the convergence of the
perturbative series are poor fofel= 1 and marginal for 1 = 2/3.

6. Summary

We studied the topology conserving gauge action in the dqueshapproximation for various
values off3, 1/¢ and the lattice size. By measuring the topological charglh winew cooling
method, we find that the stability of the topological chargénproved for larger A when com-
pared at a same lattice spacing and lattice size. Measulsnglee static quark potential and the
Sommer scaley, re, the scaling violation are found to be small. Our study shihasthe topology
conserving gauge action is feasible for QCD simulationactal applications of this action such
as QCD ine-regime and simulations with dynamical overlap fermioresanderway.
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