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1. Introduction

The vortex picture of the Yang-Mills vacuum was initially proposed as aiblessiechanism
of colour confinement. It is based on the idea that a random distributionrtéx/colour flux is
sufficient to effect an area law behaviour for large Wilson loops. Desjs simplicity and early
successe$|[1], a precise confirmation of this scenario has beeredlusiviong time. Recently, the
picture has attracted renewed attention, mainly due to the advent of gaingetéichniques which
allow to detect center vortex structures directly within lattice configuratioasye-scale computer
simulations have revealed ample evidence that the long-range properti@sgMills theory can
be accounted for in terms of vorticd$ [2].

To complement the lattice approach, a random vortex world-surface maddhtroduced as
an effective low-energy description 8fJ(2) Yang-Mills theory [B]; it has recently been extended
to the gauge groupSU(3) [#, B]. The fundamental assumption is that the long-range structure
of Yang-Mills theory is dominated by thick, weakly interacting tubes of center Which trace
out closed surfaces in space-time. No analytical approach is knowsufdr a quantum string
ensemble. As a consequence, we realise our model on a space-time lattieefingtthspacing
a to represent the transverse thickness of vortices. Short-distanctustaismaller thaa (or,
equivalently, momenta larger tharya) cannot be resolved in this approach.

I will discuss the physical foundations of the center vortex model and $echaical aspects
in the next section. The main part of the talk is section 3 which presents diselet results
obtained in the model. In Section 4, | conclude with a brief summary and soneeayeomments.

2. Phase diagram and choice of parameters

Vortices are closed lines of colour flux in three space dimensions arréspondingly, closed
world-surfaces in space-time. Their dimensionality is unique in that they @amdntopologically
stable linking with Wilson loops. The colour flux placed on the vortex is quashzeh that each
linking with a Wilson loopW(%) (i.e. eachintersection poinbf the closed loof¥” with the vortex
surface) contributes a center elementSbf(N) to (W(%)). To describe such intersections, the
vortex surface must be defined on a lattice whictitial to the one where Wilson loops (and gauge
connections) live. This emphasises the dual character of our model.

Technically, we create random vortex surfaces on the dual lattice hynass triality® to
the elementary squares. The fixed lattice spaartgfines the minimal distance at which two
intersection points can be resolved, i.e. the thickness of the vortex tubeetr Random surfaces
created in this way are weighted by a model action containing a Nambu-Gotamdature term
[A], symbolically

c
S=Ye¢ + > (2.2)

plag
The parameters are determined by measuring the zero-temperature stsing ten(in units of
the lattice spacing). One observes a deconfined region at large caufdirmy with a shallow

IFor the caseG = SU(3), the center comprises three elemeft8) = {1, e2/3 *1/3}. They are usually
parametrised as= exp(2mi/3-q) in terms of thetriality q € {0,1,2} defined modulo 3. The triality of an elemen-
tary square determines the center element which a Wilson loop recdiesinmtersecting the square.

320/2



Center Vortex Model for SU(3) Yang-Mills Theory Markus Quandt

16 O
1.4 -
12 -
1% g B o
&
© 08 %
0.6
0.4
0.2
0 . . .
0 0.5 1 15 2
T/T,

Figure 1. String tension between two static colour chargasgse¥ and spatial string tensiorsquare$
as a function of temperature. Measurements were taken ori & g lattice for the physical choice of
parameters eq. (2.2).

cross-over to a confined region at smélc) [ff]. In the latter domain, one can also effect a
deconfinement phase transition by increasing the temperature of the sim(latitny reducing the
temporal lattice extension). Using an interpolation procedure, the ratio afitiwl temperature,

Te, to the zero-temperature string tensiop, can be extracted at all couplings. Comparision with
the known valu€el./,/0p = 0.63 from SU(3) lattice gauge theory then yieldsliae of possible
physical values in parametés, c) space. As it turns out, the long-range physics are almost constant
on this parameter line so that we are free to make the arbitrary choice,

£=0, c=021. (2.2)

From the string tensioipa® measured at this point, the overall scale can be determined using the
phenomenological valua = (440 MeV)? from QCD. This gives a vortex thicknessaf= 0.39 fm.

3. Applications

3.1 Spatial string tension

The zero-temperature string-tensiop used to fix the parameters is extracted from Wilson
loops extending in one space and the time direction. In addition, purely si¥éts&dn loops
can also be measured, although they do not have an immediate interpretasiorirgsr-quark
potential. From lattice gauge theory, it is known that spatial Wilson loops ixdrbarea law at
all temperatures and thgpatial string tensiomxtracted from them persists in the high-temperature
phase[[B]. As shown in fig] 1, our model reproduces this stronglyetaiad hot phase; in fact, our
results for the spatial string tension agree with fgf. [6] to within 5%. Thises&can be attributed
to thepercolationbehaviour of vortex clusters.

3.2 Finitetemperature phase transition and vortex branching

The confinement mechanism is most clearly seen in the details of the phasgdnaai non-
zero temperatures. Histograms of the action density measured at the critipgrsgure reveal a
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Figure 2: The right-hand panel displays a four-dimensional lattieswwhere a vortex surface, consisting
of elementary squares, branches along-a3 bond. The left panel shows the same situation projected to a
3D slice.

qualitative difference between the gauge gro8pk2) andSU(3): The SU(3) transition exhibits
the shallow double-peak structure characteristic for a Wiestkorder transition while theSU(2)
transition is continuousseécond order[ff]. This pattern is also seen in full lattice gauge theory.

To understand the origin of this difference, we have to look at the vorexngtry in more
detail. InD = 4 dimensions, each bond on the dual lattice is attached to six elementaryssquare
which are assigned trialitieg < {0,1,2} in our model. The local geometry of a world surface is
then characterised by the numhet= 0, ..., 6 of vortex surfacesy# 0) meeting at a given bond.
The odd valuey = 3,5 are not allowed if8U(2) and represent genuirgJ(3) vortex branchings
cf. fig. B. Note that the trialitgj= 1, 2 of a vortex square can be reversed by flipping its orientation;
moreover, triality is only conserved modulo 3 and a Dirac string-=(3) may be added to any
configuration. The branching in fif} 2 is thus equivalent to a situation evtieeeq = 1 vortices
emerge from a common point (or bondin= 4). Branching lines ilD = 4 are therefore similar to
center monopolgvorldlines.

The statistical distribution of branchings is best studied in 3D slices of the latticence
possible branching bonds are projected qmntsof type v. From fig.[B, we conclude that the
largest volume fraction in the confined phase corresponds to noetingnvortex mattery = 2),
with a considerable probabitlity of both self-intersection= 4,6) and genuine branchingg &
3,5). Only 15% of the volume is not occupied by vortices= 0). In the deconfined phase
(T > Te), the situation is qualitatively unchanged fone-sliceswhile space-sliceshow virtually
zero branchings abovk. This can be understood if the vortices underdde)percolation phase
transition for T > T, and most vortex clusters wind directly around the short time direcfion [4].
The same phenomenon explains the persistence of the spatial string teasimsed above.

3.3 Vortex free energy and the 't Hooft loop

The 't Hooft loop can be viewed as a creation operator for (quantifted)along a closed
spatial line¥. It was formally introduced by 't Hooft in 1978 as a dual order paramketethe
deconfinement transition on a space-time torus. Recently, explicit realisafitins construction
have been given both in the continuuh [7] and on the latfice [8], where méyiextéended 't Hooft
loops implement twisted boundary conditions.

2The casev = 1 describes a single vortex surfagedingin the given bond; this is forbidden by Bianchi's identity.
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Figure 3: Volume fractions occupied by points of a certain branchypetv within 3D lattice slices. The
left panel shows the distribution at zero temperature ircthdined phase. The middle and right panel both
correspond td@ > T, with the middle referring to #ime sliceand the right to @pace slice

In the center vortex model, the 't Hooft loop is literally an (op&on)ytex creation operator
[B]: Its action is to add a fixed triality = 1,2 to each elementary square in a world-sheet over
%, since triality is additive, this simply injects a center vortex of type- 1,2 in the current
configuration. The exact form of the world-sheet o¥éis irrelevant (and center-gauge dependent),
but for simplicity, we restrict ourselves to planar loagsand minimal surface sheets over them.

The action penaltAS incurred by the vortex creation is related to thatex free energy F
viae " = (e72S). As mentioned above, the free energy is expected to furnish an ondemeter
for the deconfinement transition with essentially the opposite behaviour &Silen loop. This
is nicely confirmed in our model: The left panel of ffg. 4 exhibits a linear risthe free energy
with the area of the 't Hooft loop & > Tc,® which allows to define dual string tensiorop in the
deconfined phase.

As we approach the phase transition from above, the dual string tengioklygvanishes
(cf. right panel of fig[}). In the confined phase, the subleadingnater law is hidden in the
statistical noise, and the vortex free energy is consistent with xertek condensatign Precise
measurements close to the transition reveal a small discontinuity

Vb|;_p , = (345+4.9)MeV (3.1)

in the free energy, which should be compared to the ordinary zero-tampestring tensiogy =
(440MeV)? setting the overall scale. This demonstrates again the weakness of thardist
transition for the colour grou® = SU(3). Quantitatively, our findings are in fair agreement with
lattice caluclationg[]8] which seem to favour a slightly larger vadge~ (48 MeV)>2.

4. Further remarksand conclusions

In this talk | have presented an effective model for the infra-red seét8tJ¢3) Yang Mills
theory, based on random world surfaces carrying center flux. mMissuonly that vortex sheets
have a surface tension and stiffness, the model reproduces martyivi@nproperties of long-
range Yang-Mills theory. Among the examples discussed here are thel spaig tension, the
order and strength of the phase transition for various gauge gronggha discontinuity of the
vortex free energy across ti&J(3) phase transition.

3The systematic deviations can be understood in terr@§2f monopole correlations, seﬂ [5] for details
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Figure 4: Left Panel: Free energy of 't Hooft loops in the deconfinedseh@ /T. = 1.093), as a function
of the minimal area over the loop. Right panel: The dual gttensionop as a function of the temperature.
Measurements were performed on a largé:30] lattice withNg = 1, 2.

The geometrical structure of vortex branchings is the key property iblestang first order
behaviour for th&sU(3) model. Geometry alone, however, is not sufficient to determine the physics
of a vortex model; the effective vortex dynamics specific to each gaumegrlay a crucial role.

In principle, the vortex dynamics would be determined by integrating out alvootex degrees of
freedom; our project is essentially the reverse approach of guesginga action and comparing
to low-energy Yang-Mills theory.

For SU(3), the results indicate that the simple two-operator action, [ed. (2.1), is snfficie
With increasing complexity of the colour group, however, additional termsamag which favour
vortex branchings (center monopolesjplicitly; such terms tend to enhance the strength of the
phase transition. In fact, preliminary investigations @®r SU(4) indicate that such terms are
indeed necessary and may become even more pronounced with increasibgr of colours.
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