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1. Introduction

Understanding of non-perturbative fluctuations in the QCD vacuum &as fast changing
recently. The reason is the results of the lattice simulations. In continuunytbeeithinks mostly
in terms of soft, spherically symmetric excitations like instantons. Lattice simulatartbe other
hand, indicate strongly that lower-dimensional defects are in fact ¢rimci@zonfinement, for a
recent review see, e.g[][1]. Indeed, monopoles are trajectories| defects, while the central
vortices are surfaces, or 2d defects. Moreover, the 1d and 2dtsefppear to be fine tuned, for
review see[[R]. Namely, in case of the vortices the total area scales ifcphynits [1] while the
the totalnon-Abelianaction associated with the vortices is singular in the limit of vanishing lattice

spacinga [B: A
wvort

az
whereA,qr is the total area of the surfaces whilgis the total volume of the lattice. Theoretically,
the only way to explain the observatiofis {1.1) is to assume that the surfzssesp also ultraviolet
divergent entropy which almost cancels the effect of suppressiertalthe action[(1]1). More-
over, in case of trajectories similar fine tuning is an indispensable part afctlvalled polymer
representation of field theory, see e[g. [4].

In case of surfaces, however, even imposing the fine tuning betwémpgmnd action ‘by
hand’ does not help much. In particular, if one starts with the Goto-Namtionaand tunes it
to the entropy strings decay into what is called branched polyrflers [4].bfidrehed polymers
are effectively 1d structures. The branched polymers are known teldent also t&(2) gauge
theory in 3d [[b] and in 4d]6].

The vortices observed in the vacuum state of gluodynamics are defimedtadied phe-
nomenologically, through use of projected fields. How then can one digtimdpetween ‘true’
vortices (that is, Euclidean strings) and branched polymers? The aappears simple. Consider
minimal three-dimensionalolume bound by the central vortices. If the central vortices in the
non-Abelian case are similar to the central vorticeZ @) gauge theory then:

Avort ~ 24(fm)"A); | Sy ~ 0.54 (1.1)

(V3)branched polymers~ a-Avort - (1.2)

If, on the other hand, the central vortices are true 2d dimensionaltddfem, generally speaking,

(V3)strings ~ A(SéD'Avort . (2.3)

In other words, the minimal 3d volume bound by the vortices is to scale in thégahymits.
Results of measurements of the 3d volume were reported fifgt in [7] aodtfa possibility [113).

Further results on geometrical properties of the 3d volume were obtaingl im[the sub-
sequent sections we review these results and their implications. Moreevegd some further
preliminary results demonstrating anisotropy of the 3d volumes.

2. Three-dimensional volumes

2.1 Scaling of 3d volumes

Central vortices are defined as unification of negative plaquet@&ginprojection of the orig-
inal non-Abelian fields[J1]. Plaquettes evaluated in projected fields asgiamt under remaining
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(after the projection¥(2) gauge transformations. And in this sense the vortices themselves are
uniquely defined. The volume bound by the vortices is not uniquely detedmimethe other hand.

The minimal volume bound by the central vortices can be found by minimizing the number of
negative links. In other words, one fixes the remairdig) gauge invariance by minimizing the
total number of negative links. In analogy with th€1) case, theZ(2) gauge considered can be
calledZ(2) Landau gauge fixing. It turns out that the volume occupied by the minimal euofb
negative links scales in the physical unfts [7]:

Vo~ 2(fm)71v, | (2.1)

whereV, is the total volume of the lattice. As is explained in the Introduction, refult (2.1)esp
that the central vortices of gluodynamics are not branched polymersathér look as true 2d
surfaces.

Let us also mention that there is no extra non-Abelian action associated wiBld taume
under discussion[][7]. The action is the same as on average over the lati@e. This is in
contrast with the case of monopoles and central vortices, which are diistiregl by an ultraviolet
divergent non-Abelian action, seé [9] anifl [3], respectively. Harethis difference can be readily
understood theoretically along the lines of argumentation presentfd in [2].

2.2 Removal of P-vortices

Measurements of the 3d volumes are also relevant to appreciate the meithiego called
removal of P-vortices introduced ifi J10]. One determines first centmgépted values of the link
variables Z,(x). And then modifies the original link matricék, (x) in the following way:

Uu(x) — Up(x), Up(x) = Zu(x)Up(X) . (2.2)

The effect of [2) is disappearance of confinement. Although this ysingaressive, there remains
a question to be answered, how serious is the damage to the original fiettiepd by arad hoc
procedure [(2]2). If one judges by the number of plaquettes affectg@.By then the change
affects a small fraction of the whole lattice. Indeed, only plaquettes belgngitne P-vortices are
changing their sign and the probability of a given plaquette to belong totieesis small:

Bplaquette ~ (a‘/\QCD)2 ) (2.3)

wherea is the lattice spacing and the probabilify {2.3) tends to zero aith 0.

However, this cannot be a final answer to our question. Indeed, @néshing of confinement’
means that the value of the Wilson line for a typical field configuration is dhgrits sign under
(B.3) with a probability of order unit. Moreover, the Wilson line is 1d objeat Ravortices are 2d
objects. Thus, generally speaking, they do not intersect in d=4. fiinerehange of the sign of
plaguettes belonging to the P-vortices cannot be the reason for disappeaf confinement under
(B-2). The way out of the paradox is apparently that we should follomg&aot only in plaquettes
but in the potentials (or links) as well and we come again to the 3d volumes eoedidbove.

Namely, the minimal number of links which are affected py](2.2) is vanishing iflirttieof
a— 0 as a 3d volume. It vanishes, however, not so strongly as the numplampfettes belonging
to P-vortices, seq (3.3). Note that the original version of the removakdP#ortices did not use
theZ(2) Landau gauge and approximately half of the links were modified by (2.2).
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3. Correlator of negative links

3.1 Definitions

As the next step, one can introduce correlator of negative links irZ (B¢ Landau gauge.
Since the total volum¥&; scales in the physical units one may hope that the correlator scales as
well 1. In the continuum theory, if one imposes Landau gauge correlator ¢divpotentials is
described by a single form factor. We are usifi@) Landau gauge and, at first sight, there is
a single independent form factor as well. However, the notion of a nveglitik does not have
meaning in the continuum. More precisely, negative links correspond talainigelds, A, ~ 1/a.
Therefore, we cannot rule out a priori more complicated dependeonidse mutual orientation
of the links and of the displacemext We will consider, therefore, the correlator of the negative
links in its generality and begin with corresponding definitions. Considérctselator of parallel
links:

Gy (X) = (ZopZyv), U=V (3.1)
Moreover, orientation of links and separationan be either mutually transversal so that the scalar
product ofx, and of the unit vector in thg-direction vanishes, or longitudinal so that the veefor
is directed along th@ direction as well. One can also consider correlation of perpendicular, links

Gﬁv(x) =(ZopZxv), M#V . (3.2)

Again, there are further sub-cases depending on the mutual orientatgraad links looking in
the u—,v— directions.

3.2 lIsotropic case
Let us change variableZ, (x) = {1, if Z,(x) = —1; 0if Z,(x) =1} . Moreover, consider
first the isotropic correlator:
1 A A
G = Wrzr<\x\<r+a/2 (2u(0),Zv(x)) (3.3)

where the summation runs over all linKg(x) for x lying in the spherical layer < |x| <r+a/2
andN; is the total number of links in the layer. At large distances the fun¢sion can be fitted by
a constant plus an exponent. The corresponding mass turns to be dloséawest glueball mass

m ~ (1.4—1.6) GeV . (3.4)
Note also that measurements at finite temperature were performed vemgtyesawell [12].

3.3 Anisotropy in the correlator of negative links

A new point which we are reporting here is observation of a strong aaptf the correlator
of the negative links in th&(2) Landau gauge. We will concentrate on the cpase v, see Eq.

(B-1). Defining
W )
Gliv ()
IMinimization of the number of negative links can be considered as a tisamalog of minimization of (A‘i‘,)2 >.
Although the latter vacuum expectation value is gauge dependent, its miralnalmay have a physical meanil@[ll].

— 1, (3.5)
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we observe that the correlators haposite signsNamely, the correlation of the parallel negative
links which we are considering is positive if the displacemeistperpendicular to the links and is
negative if the displacement vector is parallel to the links. Our preliminaryattataresented in Fig
1. The both correlators exhibit scaling. The mass values associated withrnlegersal correlator
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Figure 1: Correlation of parallel links: (a) transversal correlatia = r is transversal to links, and (b)
longitudinal,x = r| is along the links.

are presented in Tabjg 1.

B | afm|L | mfm?
240 | 0.1183| 24 | 5.30+0.10
245 | 0.0996| 24 | 5.35+0.12
250 | 0.0854 | 24 | 5.20+£0.15
255 | 0.0713| 28 | 5.40+0.20
2.60 | 0.0601| 28 | 5.50+0.10

Table 1: Mass parameter in the transversal correlator of paratiksli

3.4 Mass scales

Since the longitudinal correlator is negative, the correlator of negatile tannot be inter-
preted as propagator of a physical degree of freedom. Ratherdperpes of the correlator reflect
geometry of the lower-dimensional defects. And at scal&e¥ ! the geometry is not isotropic
(for a given field congfiguration). The correlators scale in physicitsuand the corresponding
mass scales are having physical meaning. In particular, the mass fitteel la®\the meaning
of inverse typical size of the 3d volume in the transverse direction. In etbeds, existence of
lower-dimensional defects brings in mass scales which are not gluebaémas

One can speculate, though, that at very large distansegGeV) ! these masses are unob-
servable. Indeed, at such distances the negative links will be sephéaratefew boundaries of the
percolating 3d volumes and the anisotropy should vanish. This guesdlis garfirmed by the
observation that if, instead of going to limit of very largeone averages over the directions the
correlation length is indeed close to the inverse glueball mass, sef Eq. (3.4)
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