PROCEEDINGS

OF SCIENCE

On the determination of low-energy constants for
AS= 1 transitions *

Leonardo Giusti, Carlos Pena
CERN, Physics Department, Theory Division, CH-1211 Ge@8y&witzerland
E-mail: | eonar do. gi usti @ern. ch,carl 0os. pena. ruano@er n. ch

Pilar Hernandez

Dpto. Fisica Tedrica and IFIC,

Edificio Institutos Investigacion, Apt. 22085, E-4607 1evilia, Spain
E-mail: pi | ar. hernandez@fic. uv. es

Mikko Laine
Faculty of Physics, University of Bielefeld, D-33501, Bfeld, Germany
E-mail: | ai ne@hysi k. uni - bi el ef el d. de

Jan Wennekers, Hartmut Wittig T
DESY, Notkestral3e 85, D-22603 Hamburg, Germany
E-mail: j an. wenneker s@esy. de,hartnut . wi tti g@lesy. de

We present our preliminary results for three-point cotretafunctions involving the operators
entering theAS = 1 effective Hamiltonian with an active charm quark, obtdinsing overlap
fermions in the quenched approximation. This is the first jgotation carried out for valence
quark masses small enough so as to permit a matching to Qee@iiral Perturbation Theory
in thee-regime. The commonly observed large statistical fluctuestare tamed by means of low-
mode averaging techniques, combined with restrictionsdidual topological sectors. We also
discuss the matching of the resulting hadronic matrix el@mto the effective low-energy con-
stants forAS= 1 transitions. This involves (a) finite-volume correctiavisich can be evaluated
at NLO in Quenched Chiral Perturbation Theory, and (b) tleetstiistance renormalization of the
relevant four-quark operators in discretizations basethemverlap operator. We discuss pertur-
bative estimates for the renormalization factors and ptessirategies for their non-perturbative
evaluation. Our results can be used to isolate the longwutistcontributions to th&l = 1/2 rule,
coming from physics effects around the intrinsic QCD scale.

XXIlIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

*CERN-PH-TH/2005-175, IFIC/05-45, FTUV-05-1003, BI-TPO&)41, DESY 05-198
TSpeaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



On the determination of low-energy constantsA&= 1 transitions Hartmut Wittig

1. Introduction

A satisfactory understanding of long-standing problem&aon physics, such as the well
known Al = 1/2 rule, has so far been elusive. In addition to final-staterautions between the
two pions, the other possible origins of the=1/2 rule are “intrinsic” long-distance QCD effects
at typical energy scales of a few hundred MeV, as well as teewding of the charm quark from
the light quark sector, owing to its large mass of around £8QAn refs. [1, 2] we outlined a
strategy to identify a mechanism for thé = 1/2 rule, by separately quantifying each of the above
contributions. Leaving aside final-state interactions; strategy is implemented by computing
appropriate hadronic correlation functions allowing téedmine the weak low-energy constants
(LECs) appearing in the effective chiral theory. Our applo& characterized by the following
features:

e The use of overlap fermions [3] in computations of hadron&tnr elements of 4-quark
operators mediatindS = 1 transitions. As described in [4] the mixing with operatofs
lower dimensions usually encountered with Wilson fermimsnsompletely avoided.

e Matching to ChPT in the so-callegtregime of QCD, where the chiral counting rules imply
that this step can be performed at NLO without the appearahc@known LECs. Since
overlap fermions preserve chiral symmetry the matchingoeaperformed in a conceptually
easy and clean manner at non-zero lattice spacing.

e Investigation of the réle of the charm quark, keeping it agetive quark in the formulation
of the effectiveAS= 1 interaction. This allows to isolate the contributions doe large
mass splitting betweem., m,. To this end we start with the (unphysical) situation of a
mass-degenerate charm quark,= m, and compute LECs as a functionof.

In this note we demonstrate the feasibility of our strategthe mass-degenerate casge=m, =
mq = ms, where QCD possesses an @Y x SU(4)r chiral symmetry. Since simulations in the
e-regime are plagued by large statistical fluctuations [Sw# describe in detail how a reliable
signal can be obtained for 3-point correlation functionisgi$low-mode averaging” (LMA) [6, 7].
Furthermore, we discuss the relations between the compuatedlation functions and transition
amplitudes forK — rir decays. This requires knowledge of the short-distancermesl@ation
factors of 4-quark operators, as well as finite-volume atioas that are computed in ChPT.

2. AS= 1transitionswith an active charm quark

In order to make this note self-contained, we report thecdfasitures of our approach. Ref. [1]
can be consulted for full details. The decay of a neutral katma pair of pions in a state with
isospina is described by the transition amplitude

T(KO— ] ) =iA€%,  a=0,2 (2.1)

whered, is the scattering phase shift. The experimental observaliat the amplitudd, is sig-
nificantly larger thar®y, i.e. Ag/A; =22.1, is called thél = 1/2 rule. Our task is the computation
of correlation functions involving local operators, whicdin be linked to the amplitudég andA,.
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The relevant local operators are obtained via the operatmiugt expansion of thAS= 1
effective weak interaction. For two generations, the eiffecweak Hamiltonian with an active
charm quark reads

2

S = 4f\3/lw2 (Vus)"Vud Z {kfQ7 +k3Q7}, (2.2)
Qf = { (SyuP-) (OyuP-d) & (Sy,P-A)(@P-u) } — (u—c), (2.3)
Qs = (mE—mp){mu(sPid)+ mysPd) b, Pu=3(1k ) (2.4)

SinceQ§ does not contribute to the physiddl— rrt transition we drop it from now on. Note
that the operator®; and Q; transform according to irreducible representations of 8U of
dimensions 84 and 20, respectively.

The renormalization and mixing patterns@f,Q% derived formally in the continuum theory
are preserved on the lattice, provided that the latticeddifgeratoD satisfies the Ginsparg-Wilson
relation [8], and therefore an exact chiral symmetry at dirétttice spacing exists [9]. If one
furthermore replaceg by ¢ = (1 — %aD)w, the resulting local operators in the lattice theory
have simple transformation properties under the chiralmsgiry. Thus, no mixing with lower-
dimensional operators can occur [4].

The amplitudes®y and A, can be related to low-energy constants in an effective loergy
description ofAS= 1 weak decays. To this end we consider the leading ordertiefechiral
Lagrangian

Fe=JFPTr[(0,0)9,0"] — 32 Tr [umTe®N MU Te oM (2.5)

whereU € SU(4) denotes the Goldstone boso#sis the vacuum angle, ard is the quark mass
matrix. The LECS andZ denote the pion decay constant and the chiral condensate chiral
limit. The low-energy counterpart of thES= 1 effective weak Hamiltonian is obtained at lowest
order in the chiral expansion as

%Wzm%memeWm} (2.6)

where operators containiig have been neglected, and
é’\i apvs = SF4(UaUT Uad,UT™) .. + projections onto irreps. of dim. 84,20 (2.7)
Byd =~ 2 = ya = Jsp

The expression which links the LEQS andg; to the ratio of amplitudesy/A; at leading order

in ChPT then reads
A 1 <1 391>
— + 2.8
A 2\2 29, (2:8)
Finally, the LEngf can be determined by matching suitable correlation funstio ChPT and
QCD. This leads to ~
9, _ kMw/A) Z7(g) C
+H=—% C= = (2.9)
0 ki (Mw/N) Z+(go) Cf
Here, the chiral correction factéf is obtained as a ratio of correlation functions{&i‘[] computed
in ChPT, and:f are specified in eq. (3.2) below. On the RHS the short-distancrections include
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the Wilson coefficient; and the renormalization facto&", which relate the unrenormalized
operator(Qf)bare, considered at bare couplirgg, to the renormalization group invariant operator
via

(Q7 )rot = Z(90)(Q7 bare (2.10)

In the following sections we describe the evaluation of theralation functions, the chiral correc-
tion and renormalization factors.

3. Lattice set-up in the SU(4)-symmetric case

Since preserving chiral symmetry is an essential featuiosetup, the computation of the
correlation functions in Egs. (3.1,3.2) is performed in aertap lattice regularization. In order
to match QCD to its effective low-energy description in tHg(%)-symmetric case, we start by
defining suitable two- and three-point correlation functi@f left-handed currents and four-quark
operators in QCD, namely

Clx0) = 3 {o(X)]apl%0(0)]pa) - (3.2)
C (40.0) = 3 ([30(0]au @ (0) [Jo(¥)lus) - (32)
Xy

where the non-singlet left-handed curréptis defined through

Fu(X]ag = (Wa YuP-Pg)(x), (3.3)

a,B are generic flavour indices, and the replacemgnt- I has been performed in the four-
quark operators of EqQ. (2.3). Recall that in the SU(4)-symniciémit the three-point functioné:li
receive contributions from "figure-8" diagrams only, sirfege" diagrams exactly cancel due to
the antisymmetrization undéu < c). Itis also useful to define the following ratios of correteti
functions, which will enter the determination of low-engigpnstants:

~ C{ (%,Y0) ~ C{(x0,Y0)
R84(X0ay0) - C(XO)C(yO) 9 RZO(XO7YO) - C(XO)C(yO) b (34)
+
Rg4/20(%0,Y0) = %- (3.5)

Far enough from the location of the source operators, alietlratios are expected to exhibit
plateaux that can be fitted to a constant, which can then likassimput in the matching procedure
to Chiral Perturbation Theory.

At low quark masses the numerical computation of correfatioctions is usually hampered
by the presence of large statistical fluctuations. Therlat® be understood by considering the
expression of the quark propagator in terms of eigenmod#sedfieuberger-Dirac operatbr, viz

Lo @n(y)!
S(x,y) = v Z W ) (3.6)

IThe use of left-handed currents, as explained in [10, 1Jaitiqularly convenient for technical reasons.
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with )Tk =(1- %a_m))\k andDny = AkNk. In the regimem < (2V)~1, which allows a matching to
Chiral Perturbation Theory in the-regime, the low-lying spectrum @, = (1— %Em)D +mis
discrete withAA ~ 1/2V, and sizeable contributions to correlation functions cémom a few low
modes. Large statistical fluctuations can be traced badiumpy” structures in the wavefunctions
of these modes [12, 6].

In order to treat this problem we use low-mode averaging (DNtiroduced in [6]. The
technique proceeds by treating explicitly the contributio left-handed quark propagators coming
from a few lowest-lying modes d. To be specific, we split propagators as

Niow T
sicy) = 3 AHEEDT gy @7)
K=1 k

where 3" is the propagator in the orthogonal complement of the sudesgpanned by thagw
lowest modesec = Pyux + P_gDPsUx, —0 being the chirality wher® possesses zero modes (if
any), andu is an approximate eigenmode i’an:

PgDTmDmPUUk = OkUk + 'k, (Uk, r|) =0 \V’k,| . (3.8)

After inserting the RHS of Eq. (3.7) in the expressions fer ¢brrelation function§ andCf, they
can be split as

c=c'+ch4chh, (3.9)

wherel andh denote the number of “light” and “heavy” parts of the quar&gagator, respectively.
Since the “light” part ofS(x,y) is available by constructiokx,y, it is possible to exploit transla-
tional invariance to sample the &lkontributions over many different source points. Furthamen
as explained in [6], by performing,, additional inversions of the Dirac operator it is also pblesi

to extend this to the mixed contributi@!". It is easy to check that the same applies tohtlecon-
tribution ton, as well as to part of thiehll one. As already shown by the exploratory study in [11],
the application of this technique witly,, ~ 20 suffices to obtain a signal for three-point functions
at values of the quark mass of interest in view of matching-tegime Chiral Perturbation Theory
results.

4. Correlation functionsin the € and p-regimes

Our simulation parameters are summarized in Table 1. Thelations for lattice A are those
reported in [1], while lattices B and C are new results. Thdistics of lattice C is currently being
increased. The results quoted for lattices B and C have toh&dered preliminary.

Our main aim is to fit to constants the plateaux in the ratiosaofelation functions in Egs.
(3.4,3.5). For quark masses in tperegime the procedure is straightforward, and our stesisti
allows quite precise results for the different ratios. Aample forRgs/20 in the p-regime is shown
in Fig. 1. It also shows the effect of LMA on correlation fuiocts at typicalp-regime masses.

In the e-regime topology plays a special réle [13], and correlafiamctions are given within
fixed topological sectors. Therefore we proceed by comgutie quantities of interest at fixed
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Lattice B
A 5.8485
B 5.8485
C 5.8485

L/a
12
12
16

L[fm] am
1.49 0.040,0.053,0.066,0.078,0.092 638
1.49 0.003,0.005,0.008.040 681
1.99 0.002,0.003.020,0.030,0.040,0.060~ 350

T/a now # cfgs
30 5
32 20

32 20

Table 1: Simulation parameters for the runs discussed in the texte mhss values in italics are those
corresponding to the-regime. The statistics indicated for lattice C refers t® tlumber of configurations
for masses in the-regime; forp-regime masses the statistics is roughly half of the inditéigure.

E; 0.5 * i};ﬁiwJiuiuEH?HiuiHiﬁmﬂﬁ g Z Z

R

84/20

Figurel: Left: The ratioRg4 for am= 0.020, lattice C. The points indicated by circles (triangles)e been
obtained with(out) LMA. Right: Weighted average oVef (solid band) of the rati&g,/»o for am= 0.003,
lattice C.

value |v| of the (absolute value of the) topological charge, and thenfopm a weighted average
over |v|. In order to have large enough statistics within each seatut taking into account the
expected distribution of topological charges, we imposeuntd on the largest value pf| entering
the average|¢| < 8 on lattice B andv| < 10 on lattice C). Furthermore, following the observation
that the signal-to-noise ratio in the sectors with lowestis poor? for the largest volume (lattice
C) we also impose a lower bound| > 2. This procedure is illustrated in Fig. 1. In taeegime
we find no signal at all for the relevant observables if LMA @ implemented. Indeed, to our
knowledge, these are the first results for three-point fanstobtained at quark masses in the
£-regime.

Our most interesting results are those for the mass depeeadsrthe different ratios. They
are summarized in Fig. 2, where we put together phegime results for our three lattices and
the e-regime results in our larger volume. Three features worgmtioning are: Firstly, the mass
dependence is remarkably smooth. In particular, there istramg mass dependence Ry for
very small quark masses. Notice, however, that finite vol@woreections have to be taken into
account for the-regime points (see below). Secondly, our results poinatdea moderate volume
dependence at quark masses corresponding to pseudoseslan masses around or below the

2This can be interpreted as a consequence of the presenagy sfwall eigenvalues dd, which in turn induce large
statistical fluctuations even after LMA.
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Figure 2: Mass dependence of the rati@s, Rxo andRgy/20 for lattices A (crosses), B (empty circles) and
C (full circles). Results for lattice C are preliminary. Tpeints atam= 0.040 have been slightly displaced
to improve visibility.

kaon mass. As far aRg4 is concerned, this was already observed in [14]. Thirdlg, direct
comparison of the different results @t = 0.040 shows that the effect of LMA with an adequate
number of low modes is far from negligible even at moderalkaige values of the pseudoscalar
meson mass.

5. Renormalization factorsfor 4-quark operators

The renormalization factorii(go) of eq. (2.10) are scale and scheme independent. For a
particular renormalization schenXethey can be decomposed according to

Z*(go) = S (/) Zx (g0, an), (5.1)
whereu denotes the renormalization scale, and the coeffic'ng'bare given by
— oK) Vvi(Q) | Yeo

S5 (/) = (2bod(11)) -0/ @) ex {_ [ [i_+—'”. 52

x (H/N) = (2007 (1)) PUh 99 Blg) T g (5.2)

The anomalous dimensiops are known in perturbation theory to two loops for severakseés.
For discretizations based on the Neuberger-Dirac operd@renormalization factoéx(go,au)
have been computed fof = RI/MOM in perturbation theory at one loop in ref. [4]. Thus, the
perturbative renormalization of suitable ratios of 4-duaperators defined for overlap fermions
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and the RI/MOM scheme is

_ 2

% 14 % {12In(4pa) — 2(Bs— By)} + O(gl) (5:3)
RI ’

Zzﬁggio(ygt;) 1 8 {ain(aua) - 2(es-8) | +o() (5.4)
A;RI\H0

Zn(go.ay) . G 4 4

B . & {ein(aua) - S(es B} +0(68) (55)

The coefficient8s andBy, are listed in Table 1 of [4]. In addition to 4-quark operafove have also
considered the renormalization of the axial current. E§st)(and (5.5) then serve to renormalize
the correspondind@-parameters of the operato@;t. The RGI matrix elements are obtained by
combining the above renormalization factors with the coieffitscy;

Perturbation theory in the bare couplilgé is known to have bad convergence properties.
The aim of “mean-field improvement” [15] is to factor out uggltal tadpole contributions in the
perturbative expansion, by a rescaling of the link varigbjgx) — U, (x) /up. For the Neuberger-
Dirac operator defined by

Dy = g (1—A(ATA)‘1/2) ., p=1+s |s<1l, A=1+s—aDy, (5.6)

the corresponding rescaling of the quark field is givenyby- /(p/P)Y, p = (p — 4)up + 4.
For the renormalization fact@,, = 1+ g%zgln) +0(gg) of ann-quark operatorr,, the mean-field
improved version reads

) n/2 - npo—4 ~ 2
z5=(5) {1+92[22>—§—p 5 ué”]}, &= (5.7)
0

whereug = 1+ uél)g% +.... When applied to our set of operators, it is immediately rcteat the
contributions from the prefactdp/p) as well as those proportional uél) drop out in ratios like
Z~/Z* andz*/ZZ. Mean-field improvement of the expressions in egs. (5.33}(5 thus simply
accomplished by replacing the bare coupl'ggg)y the “continuum-like” couplingy?.

For a reliable determination of operator matrix elemetis use of non-perturbative estimates
for renormalization factors is to be preferred. The Schr@dr functional (SF) offers a general
framework for non-perturbative renormalization of QCD Htsgales [16]. However, the con-
struction of SF boundary conditions consistent with thesparg-Wilson relation is quite involved
[17]. Inref. [18] it was therefore proposed to introduce ateimediate Wilson-type regulariza-
tion which drops out in the final result. As an example we noscdsés the renormalization factor
A /Z,ﬁ, which is required for théB-parameteBx. The desired factor relates tlizparameter
BR'(9o) computed using overlap fermions, to its RGI counterf@t After introducing an inter-
mediate regularization based, for instance, on twistedsr@eD [19], it can be written as

yay Bk B«  B(g)) . ZtTn(QS) tm v 1
- _ - — | lim &m\%)_ g : . (58
229 =By B B |aoZng) ¢ | Bey OO

where the superscripts “ov” and “tm” on the unrenormalif@arameters refer to overlap and
twisted mass fermions, respectively. The key observaidhat the expression in square brackets
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is nothing butBk in the continuum limit, which, for instance, has been coraduiy the ALPHA
Collaboration in quenched QCD [14]. Denoting the resuIﬁQ&PHA, the renormalization factor
in eq. (5.8) isBR-PHA /B (go). Of course, in this way one cannot predBit any more, since its
value is used to formulate the renormalization conditiorowidver, the procedure can be used to
determine the value d in the chiral limit,BY, in units of BR-PHA:

aX 2& X;0V 2\ _ BALPHA B)rg;ov(go) 2
Bk = 55— (0o) x B (9o) +O(a%) = By X —gvra T 0(@). (5.9)
ZA;ov BK (go)

Note thatB{°'(go) can be obtained from a suitable ratio of correlators contpintéhe e-regime,
in conjunction with the appropriate chiral correction act

We now discuss some numerical examples
for perturbative and non-perturbative estimates bare P.T.  MFIP.T. non-pert.
of renormalization factors. In our simulations 2‘/2+ 0.525 0.582 0.58(8)
we useB = 6/g2 = 5.8485. Foru =2GeVand Z7/Z3  1.242 1.193  1.20(8)
N\ =238MeV [20], the perturbative expressions Zf/Zﬁ 0.657 0.705 0.73(8)

for the coefficientss, yield cg, (/) = 0.6259
Table 2: Perturbative and non-perturbative estimates

and ¢k, (1/A) = 1.2735. Non-perturbative es- o
. for RGI renormalization factors ¢ = 5.8485.
timates for theB-parameters computed at the

physical kaon mass in the continuum limit of quenched QCDpawo¥ided by the ALPHA col-
laboration [14]. The results for ratios of renormalizatfastors are listed in Table 2.

The entries in the table show that non-perturbative esimfdr renormalization factors are
remarkably close to perturbative ones. Indeed, even tferelifces between perturbative estimates
evaluated in “bare” or “mean-field improved” perturbatitreory are small, presumably since ra-
tios of operators are considered here. This is in stark ashto the situation encountered for sim-
ple quark bilinears, for which the deviations between pédtive and non-perturbative estimates
amount to about 30% at similar values of the bare coupling [21

6. Chiral corrections

Our strategy of determining the LECs of tA&= 1 weak interactions requires that the kine-
matical range where ChPT is applicable must be accessilddtite simulations of QCD. The so-
called e-expansion [22] represents a systematic low-energy gegmriof QCD in a finite volume
for arbitrarily small quark masses. It is characterizeckiatically by the conditionsizV ~ O(1),

FoL > 1, whereV = L* is the four-volume, andn is the quark mass. These conditions lead to
different chiral counting rules compared with the more camiy known p-regime. In particular,
since the inverse box size counts as one unit of momentui- O(¢), one infersm~ O(g*) and
hencem;; ~ O(£?). For the effective HamiltonianZC"PT of eq. (2.6) this in turn implies that no
additional interaction terms are generated @4D. In other words, the-regime allows for a NLO
matching of lattice data to ChPT without the appearance ditiadal, unknown LECs [23].

We can now work out the chiral correction factdrin eq. (2.9). To this end we define corre-
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lation functions of the left-handed axial current in comglanalogy with the fundamental theory:
“x0) = [ x50 FEO).  FE=IFTNep (UaUY) . (6
~ ab ~
G 0y oy = | & [ By FEXGE Olagyo £8)-)- 6.2)

Choosing a diagonal quark mass matrix and flavour matifée3® as in eq. (D.6) of [1], one
defines the chiral correction factbir by

o~

(51_ (X07 yO)

¢, (X0,Yo)
For later use we also consider the chiral correctiongfparameters, i.e.

~

(50
k=2 000N L ppne v o=t 6.4)
% (%)% (Yo)
Explicit expressions are listed in section 5.3 of ref. [ Hig. 2 of [1] the quantityRis plotted as a
function of the box size for several lattice geometriesldady demonstrates that chiral corrections

are reasonably small for box size$> 1.5fm and lattice geometries with/L < 2.

H

= 1-2R(Xo0,Yo)- (6.3)

7. Synthesis, conclusions and outlook

We can now combine our results for ratios of correlation fioms with the appropriate renor-
malization and NLO chiral correction factors. We expect tha latter are best controlled for our
dataset “C”, for whichl /L = 2 andL = 2fm. The link between the ratigy /g; and the correlation
functions is given in eq. (2.9), while individual values fgr are obtained from
7+
S ) 1)
and similarly forg; . The LEngf are then related to the amplitudég A, via LO ChPT.

Our preliminary results for these amplitudes in the SU{Anmetric theory indicate a severe
mismatch with experiment: roughly speaking, our valueAgrs too small by a factor 2, whilé,
comes out a factor 2 too large. This produces an estimatagfok, which is four times smaller
than the one expected from the experimentally obsefAted 1/2 rule. On the other hand, this is
a factor 4 larger than the naive larbi-imit, and does thus move in the right direction compared
with this case.

However, it would be premature to conclude that&the= 1/2 rule is generated by the decou-
pling of the charm quark, since the amplitudlgeis insensitive to the charm mass, yet its experimen-
tal value is not reproduced either in our calculation. Ofhessibilities for the observed mismatch
are uncontrolled finite-volume corrections, quenching@t, or even the breakdown of LO ChPT
when relating the LECs to the transition amplitudes. Ouuritwork will thus concentrate on
corroborating our results in theregime, as well as incorporating the effects of a non-degda
charm quark mass. In this context we shall investigateratere choices of correlators, which are
saturated with zero modes [24].

01 K" = ki’ (Mw/A)

Our calculations were performed on PC clusters at DESY Hagnl@tiILEA and the Univer-
sity of Valencia, as well as on the IBM Regatta at FZ Julich. thik all these institutions and
the University of Milano-Bicocca for their support.
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