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1. Introduction

The development of methods for treating lattice fermiongvpreserve the chiral symmetries
present in the continuum theory represents a major advareajtting familiar quantities such as
Bk to be studied with improved precision and new guantitieshsas CP violation in K meson
decays, to be treated using lattice methods for essentralyirst time [1, 2, 3]. These methods
require significantly more computer resources than thedaranWilson or staggered formulations.

Calculations using the five-dimensional, domain wall fesam{DWF) formulation are more
demanding by approximately a factor lof, the extent of the lattice in the fifth dimension. The
precision of the resulting chiral symmetry depends on tipausgion between the left- and right-
handed light degrees of freedom which are bound to the fauedsional boundaries= 0 and
s=Ls— 1, wheresis the fifth-dimensional coordinate. For finitg, propagation between these
two boundaries is possible and introduces a residual brgakichiral symmetry. Given the strong
motivation to use a relatively small value lof to reduce computational cost, it is important to be
able to estimate the size of these residual chiral symmetgking effects and their dependence
on Ls. This chiral symmetry breaking propagation across the-tifthension of the DWF lattice
can be conveniently investigated by using the transferirfmrmalism, developed for the case of
domain wall fermions in Ref. [4].

2. DWF transfer matrix

Lischer’s original discussion of the Wilson fermion trarghatrix has been exploited to ana-
lyze lattice chiral fermions in Refs. [5, 4]. The case of DWdsIbeen thoroughly treated in Ref. [4].
One first defines a matriZ which, like the Wilson Dirac operator, acts on four-dimemsil Dirac
wave-functions (for 4.3 x T lattice with three colors and a single flavor, this islahx T x 12-

dimensional space):
B! B-iC
T = =g 21

<CTB—1 CTB—lC+ B,) (2.1)

where
1
Bam = (5—M)&m— > S [ amUnu+ - pmm,] and (2.2)
o
1
Com = > S [ amUnu — Sy 1] O (2.3)
o

This matrix can then be used to construct a “second-quatitizansfer matrixT with acts on a
2L°xTx12_dimensional Fock space:

T = & Znmd (%) (Hr)nmd(Xm) (2.4)

Here q(x,) is the quantized lattice fermion field, a function of space &me. Continuing to
describe the results of Ref. [4], we can use this matrix toadyce the usual discrete DWF path
integral that is evaluated numerically in a lattice caltola(Ls > s> s > 0):

/ dW(x,9dP(x,5)] & F Wi, 9P (xy,8) = Ztr{ THg00) T ¥q0x) ' T () | (2.5)
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Here, to be concrete, we examine the case of the calculdtmb-dimensional fermion propagator.
This expression is valid even before an average over gaugds feeperformed. The Grassmann
variables¥ andW correspond to the five-dimensional DWF fields and the operaton;) repre-
sents than¢-dependent boundary conditions imposed on the DWF pathrizite

O/(my) = [ (€n&h+ My Elen) (dad] + mydich), (2.6)

n
wherec;, andd! are the right and left-handed componentsyof,). Whenm; = 0, &(m; = 0)
projects onto a “surface” vacuum sta@g) which is annihilated by, anddy.
We can analyze the larde behavior of Eq. 2.5 by introducing a hew Fock space basiggusin

the eigenfunctions dfit: Ht w,f = iE,f(,U,f and expressing the original fermionic operaox,)
as:

= 30K )0t T i O (2.7)
Using these operators and dropping an over-all factor rivester matrix of Eq. 2.4 becomes:

T — o (5kEd 6005k Ee Bipe) (2.8)
It is now easy to discuss the largdehavior of the transfer matriks:

0T|+Z e % 6l |or)( OT|Ok+Z B pLlOr) (Or [P+ .. (2.9)

Here the “transfer matrix” vacuun®r ) is annihilated byox and pk. In the limit of larges, T= will
simply project ontgOr). The next leading corrections in Eq. 2.9 come by occupying afithe
fermionic states corresponding to eigenvectorklpfwvith eigenvalueElf close to zero.

While there are few exact results regarding those eigetiimof the operatoH with small
eigenvalues, it is likely that they fall into two classes 76,8, 9]: the first is possibly rare, local-
ized states with eigenvalues approaching zero while thenskeis more numerous de-localized or
extended states whose eigenvalues lie above a mobility kd@e" > Ac [9].

3. Residual mass

We can now combine Eq. 2.9 with this assumed eigenspectruty ¢b estimate the depen-
dence of residual DWF chiral symmetry breakinglan We start by examining a general matrix
element of a product of “physical” 4-dimension fermion feeldhich is best represented by a prod-
uct of operators containing right-handed and left-handewhion fields, evaluated on tise= Ls—
ands = 0 boundaries:Or and O, respectively. Generalizing Eq. 2.5 and, for simplicityttisg

= 0 we find:

(OROL) = (0g|ORT O |0s) ~ <OS|OR{|0T><OT| + Ze_LSEJGUOTNOTI@k
+ye & 45 L0 ) (O |k + .. }OLIOg). (3.1)

Here the leading term, the projection operd@at)(Or|, divides the Greens function into two inde-
pendent factors demonstrating the separate, flavored skiranetry of the left- and right-handed
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fermions. The first correction permits quark numbek exchanges between these two otherwise
independent sectors. This suggests that the second addetiirs in Eq. 3.1 should be interpreted
at low energies as the residual mass openateiy expressed in this 5-dimensional language.

A relation between this residual mass term and the secondhémddterms in the operator in
curly brackets in Eq. 3.1 can be obtained if we express theatgrs oy and py in terms of the
conventional 4-dimension fielg(x), inverting Eq. 2.7:

> M (Xn)Y(Xn) — meSZ{qR(Xn)WOTMOT\qL(Xn) — 0R(%)|0r) (Or !qL(xn)TJr} (3.2)

L5 S G O e 5 o)1) O )

n,n/

£33 dic )t e+ 6e0910r) (OrlaL () (3.3)
n,r/
Here the RHS of Eq. 3.2 is the residual mass term written inrdresfer matrix language while the
expression in Eq. 3.3 is a rewritten version of the leadirdgprcontribution from the second and
third terms in Eq. 3.1.

We can justify this relation and estimate.s, if we assume that the quantitigg L[JEE (Xn) L[JEE (Yr)
are localized on the long distance scale at wingh is defined:

Ka,b(xa y) = Z ltulfa(x)Tl'huki’b(y)eil_sEki ~ mre554(x—y)6a,b> (34)

wherea andb are spin-color indices and we assume that the diagonalcghim-structure will
appear and any dependence on the labelill disappear when a volume and/or gauge average is
performed. We can then approximates= %2 [ d*xKaa(X,y) ~ %ZR“Ka,a(y, y). Were the “radius”

R estimates the small region kithat contributes and a sum over the repeated iredexntended.
Finally, K(y,y) and hencenescan be determined by integrating oyeand using the orthonormality

of the eigenfunctiongy, (y):

R R

Mes = =-Kaahy) = 1ors [ 4*YKaal%y (35

_ % ZeLsEf - R4/°° dAp(2)e s (3.6)
—AcLs 1

~ Ripe(de) = — + Rip(0) 3.7)

Herep(A) on the RHS of Eq. 3.6 is the density of eigenvaluesigfper unit space-time volume,
color and spin. The final Eq. 3.7 is a generalization of Eqd&playing the expected contributions
of localized () and extendedg] modes with possibly different average sig@ndRe. In this final
equation we have also taken the limit of ladge This is the “standard” result for the dependence
of mes0n Lg, although the factor of Lg is usually missing from the left-most term.

4. Operator mixing

Having developed a reasonably systematic approach to asigmthe size of DWF chiral
symmetry breaking, we can now apply this method to a quabfitypecial interest: the mixing
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between the usudD, | operator whose matrix element givBg and potentially larger operators
whose matrix elements do not vanish in the chiral limit. Hegewill examine the case of mixing
betweernO, andO, g where:

Ok =SV (1— y)dsy* (14 y°)d. (4.1)

The mixing between these two operators can be representi guatiorOf™ =7, | Oy +
Z, 1 1rROLR, €Xpressing the continuum opera@f?" in terms of those defined on the lattice. The
mixing termZ | rris required to remove the contribution of the wrong chiyatiperatorOr that
will appear in matrix elements of the lattice opera@i coming from residual chiral symmetry
breaking.

The mixing coefficient of interest can be computed by evaigaa Greens function far off-
shell to avoid innocuous “mixing” caused by low-energy, raoeous, chiral symmetry breaking:

Zir(H) = 1—]2-81 _<4{/d4xi gPi-% }<0|aR(X1)¢1V“¢ZSR(X2)OLL(O)HL(X3)¢SVM ¢4S|_(X4)|O>pi2:u2
~ %1 i<2{/d4xi gPiX }(0|aR(X1)[251V“¢ZSR(X2)§|_(O)y“d|_(0)|O>piz_uz. (4.2)

In the top part of Eq. 4.2 we show the usual off-shell Greenstion that will determine th®,r
component present in tl@ | operator. This has been simplified in the lower equation byoreng
the two normal, chirality conserving fermion contractiersa step accurate only at tree level.

We next evaluate the RHS of Eq. 4.2 using the method discuss®mee. In the transfer matrix
language, the expression to be evaluated takes the form

ZuLR(M) ~ gln 2{ / dx P }<os\q‘é*<xl>¢lv“¢2q§<xZ>TLSqE*<0>v“qE<0>\os> oy (43)

We can now insert the largeexpansion fofTs of Eq. 2.9 into Eqg. 4.3. Clearly the leading order
term |Or)(Or| does not contribute since the sta@g) is an SU(3). x SU(3)r singlet while the
operatorqu(O)qE(O) transforms as a8,1) under this group. Likewise the contribution from a
single state of the sort represented by the second and ¢hiresin Eq. 2.9 corresponds to tf81)
representation and hence also vanishes.

Thus, we must go to the next term in the lagexpansion ofT S, one containing two filled
eigenstates offt. This would suggest a double suppression of ordgr. However, since two
flavors of quarks are involved, there may be a larger corttdburom a gauge configuration that
supports a single localized mode with near-zero eigenvafudy [10]. While such a mode is
suppressed (it will appear infrequently in the gauge awesagl must be located near the position
of the weak operator) if this mode can be used twice, oncéns quark and once for the quark,
only a single suppression factor will be involved. HowewhRis is not possible here: the product
gt (0)q (0) has quark number zero while the paif$and 53 pd have quark numbet-2.

Thus, a non-zero contribution to the leading term in Eq. &e§uires two independent eigen-
functionsy,” andy,, for thesandd quarks respectively. Carrying out a heuristic estimataijlar
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to that in Egs. 3.4-3.7, gives:

Z\ L RR~ /0 dﬁd)\*efs(““*){RSpee()\ﬂ)\’) +RERP(A T AT+ R (AT,A7)}

“Aele
~ {Rpu2) 4RO} =t (@.)

where, for examplegy (AT, A7) is the joint distribution of localized, positive and negatenergy
modes with eigenvalues* andA —. One obtains the lower line of Eq. 4.4 by approximating these
joint densities by products of single eigenvalue densdies taking the limit of largé.s.

5. Conclusion

Using the transfer matrix formalism of Furman and Shamir w@eehmade rough estimates
of the largeLs behavior of the DWF residual mass and the chiral symmetriating mixing of
the four-Fermi operators which contribute to a calculatidrk® — K° mixing. We find that this
operator mixing, which changes chirality by two units, isidly suppressed, behaving @
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