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We determine the quantization condition for the energy levels of two interacting particles in a

finite box in a “moving frame”, i.e. one in which the total momentum of pions is non-zero. This

condition is valid up to corrections which fall exponentially withe the box size, and holds only

below the inelastic threshold. It is derived using field theoretic methods, using a generalization

of previous summation formulae relating sums and integrals over momenta. The result agrees

with that obtained earlier by Rummakainen and Gottlieb using a relativistic quantum mechanical

approach. Technically, we expand the finite-volume four-point Green function in terms of the

infinite-volume Bethe-Salpeter kernel, and determine the position of the poles. The final result

is written in terms of the two-pion scattering phase shift. Our result can be used to facilitate the

determination of the scattering phase shift, and can be used to generalize the Lellouch-Lüscher

formula relating finite-volume two-particle matrix elements to those in infinite volume.
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1. Introduction

Lattice simulations are necessarily performed in a finite volume. Unlike the exponentially
small errors in lattice evaluation of hadronic masses or matrix elements with at most a single hadron
in the external states, the errors when two (or more) hadrons are present in external states the finite-
volume effects decrease more slowly, as powers of the box size,L, and need to be understood in
order to obtain physical quantities with good precision. The theory of such effects has been fully
developed for two particles in their rest frame, i.e. with total momentum~P = 0. The spectrum of
such states was worked out in refs. [2, 3, 4] and the finite volume corrections to the matrix elements
were obtained in refs. [5, 6].

In this note, we report on a determination of the spectrum of two-particle states with total
momentum~P 6= 0, which we call amoving frame.1 Full details are given in ref. [8].2

There are several reasons why this extension is important, e.g. the use of a moving frame
obviates the need for vacuum subtractions in the isoscalar channel, which is otherwise under poor
statistical control. Further applications are discussed in refs. [7, 8].

The energy levels of two-particle system are determined from the position of poles of corre-
sponding correlation function. By expanding the correlation function in terms of Bethe-Salpeter
kernel, we can locate the terms which potentially generate power corrections. With the aid of
summation formulae, we can calculate these corrections up to exponentially small errors. After
rearranging and resumming we deduce thequantization condition, whose solutions generate the
location of poles. This condition depends on the scattering phase shift and the box size. Thus,
we can determine the scattering phase shift from a lattice calculation of spectrum. We sketch the
derivation of the summation formulae in sec.2 and of the quantization condition in sec.3.

2. Summation Formulae

Finite-volume effects for two-hadron states originate from the difference between the sums
over the discrete momenta in a finite volume and the corresponding integrals over the continuous
spectrum in infinite volume. To determine the relation between them, we start from the Poisson
summation formula,

1
L3 ∑

~k

g(~k) = ∑
~l

∫
d3k

(2π)3eiL~l ·~kg(~k) ≈
∫

d3k
(2π)3 g(~k)+O(e−L) (2.1)

where the summation on the left-hand-side is over all integer values of~n = (n1,n2,n3), with~k =
(2π/L)~n. The approximation is valid when the Fourier transform ofg(~k,), g̃(~r ), is non-singular,
and is either contained in a finite spatial region or decreases exponentially as|~r | →∞. We note
that functionsg(~k) with these properties have no singularities for real~k, and fall off fast enough at
|~k| →∞ that the integrals in eq. (2.1) converge.

1A generalisation of the results for the spectrum of such states to a moving frame was proposed some time ago in
ref. [7]. We address this in sec.4

2The results have been also obtained in ref. [9] using a different method.
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However, the finite-volume corrections for two-hadron correlators with non-zero total momen-
tum are contained in summations of the form

S(q∗)≡ 1
L3 ∑

~k

ω∗
k

ωk

f (~k∗)
q∗2−k∗2 . (2.2)

where we assume thatq∗2 is such that there is no term in the sum withk∗2 ≡ |~k∗ |2 = q∗2 and
that f (~k∗ ) has the properties discussed above. Note that the summation is over the moving frame
momenta~k = (2π/L)~n, with~n being a vector of integers but the summand is written in terms of the
centre-of-mass momenta~k∗ using the Lorentz transformation of eq.(3.4). It is also convenient, as
will be apparent shortly, to pull the Jacobianω∗

k/ωk out of the functionf (~k∗ ).
The manifest singularity atk2 = q2 forbids the immediate application of the eq. (2.1). In order

to avoid this difficulty, we expandf in terms of spherical harmonics3 and subtract fromS(q∗) a
function which is specially chosen to cancel the singularity:

1
L3 ∑

~k

J
flm(k∗)− flm(q∗)eα(q∗2−k∗2)

q∗2−k∗2 k∗ l
√

4π Ylm(θ ∗,φ ∗)

=
∫

d3k
(2π)3 J

flm(k∗)− flm(q∗)eα(q∗2−k∗2)

q∗2−k∗2 k∗ l
√

4π Ylm(θ ∗,φ ∗) (2.3)

=
∫

d3k∗

(2π)3

flm(k∗)− flm(q∗)eα(q∗2−k∗2)

q∗2−k∗2 k∗ l
√

4π Ylm(θ ∗,φ ∗) . (2.4)

where the Jacobian factorω∗
k/ωk corresponds to the change of integration variables from the

laboratory-frame momenta~k to the centre-of-mass frame momenta~k∗. This relation is valid up
to terms which are exponentially small in the volume. The exponential factorsexp[α(q∗2− k∗2)]
(with α > 0) are included so that the subtraction does not introduce ultraviolet divergences. By
rearranging terms, the required summation formulae for given spherical harmonics is4

Slm(q∗) = δl ,0 P
∫

d3k∗

(2π)3

f00(k
∗)

q∗2−k∗2
+ flm(q∗)cP

lm(q∗2) , (2.5)

where

cP
lm(q∗2) =

1
L3 ∑

~k

eα(q∗2−k∗2)

q∗2−k∗2
k∗l
√

4π Ylm(θ ∗,φ ∗)−δl ,0 P
∫

d3k∗

(2π)3

eα(q∗2−k∗2)

q∗2−k∗2
. (2.6)

Although the integrand in eq. (2.4) has no pole atk = q, in eq. (2.5) we separate it into two terms
each of which does have such a pole. For consistency, the two terms need to be regulated in the
same way and the principal value prescription, denotedP, is a natural choice. Finally, we gather
all the spherical harmonics and then the summation formula is

S(q∗) = P
∫

d3k∗

(2π)3

f (~k∗)
q∗2−k∗2 +

∞
∑
l=0

l

∑
m=−l

flm(q∗)cP
lm(q∗2) . (2.7)

3Here, we used
√

4π Ylm, which simplifies the normalization forl = 0.
4This equality holds up to exponentially small corrections. From now on, this will not be stated explicitly.
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Figure 1: Diagrammatic expansion of the correlatorC̃~P
(E). Propagators are fully dressed and normalized

to unity on shell.K is the amputated two-particle irreducible four-particle correlation function. The circles
at the ends represent the operatorσ , renormalized by two factors of

√
Z.

3. Quantization Condition in Moving Frames

The two-pion spectrum in finite volume can be extracted from the correlation functions of
composite operators:

C~P
(t) = 〈0|σ~P

(t)σ†(~0,0) |0〉, C̃~P
(E) =

∫
dt e−iEt C~P

(t) . (3.1)

(with time ordering implicit), whereσ(~x, t) is an interpolating operator for two-pion states and
σ~P

(t) is its spatial Fourier transform. We will determine the quantization condition by identifying

the position of poles of̃C~P
(E).

The correlation functioñC~P
can be expressed in terms of the Bethe-Salpeter kernelK through

the series shown in fig.1. Since we chooseE to lie below the four-pion threshold, there are no
intermediate states with four or more pions and the finite-volume effects inK are exponentially
suppressed [2, 6]. The same is true of the dressed single particle propagators [1]. The only power-
law volume corrections arise through the the two pion loops, and we now turn to an analysis of
these corrections. The generic loop integration/summation appearing in fig.1 is of the form5

I ≡ 1
L3 ∑

~k

∫ dk0

2π
f (k0,

~k)
(k2−m2 + iε)((P−k)2−m2 + iε)

(3.2)

wherek = (k0,
~k) andP = (E,~P) are four vectors and we have left out a factor ofi2 =−1 from the

propagators which will be accounted for later. The only properties off that we need are, first, that
it has no singularities for real~k (which holds given our kinematical constraint onE), and, second,
that its ultraviolet behaviour is such as to render the integral and sum convergent.

To simplify the pole structure we first perform thek0 integration. We choose to close the
contour of integration so as to pick up the “particle” contribution from the first pole and the “anti-
particle” contribution from the second:

I =−i
1
L3 ∑

~k

{
f (ωk,

~k)
2ωk((E−ωk)2−ω2

Pk)
+

f (E +ωPk,
~k)

2ωPk((E +ωPk)2−ω2
k )

}
, (3.3)

whereωk =
√

~k2 +m2 andωPk =
√

(~P−~k)2 +m2.

5Although we phrase our discussion in Minkowski space, we note that this same object may be obtained from the
Euclidean space correlators calculated in lattice simulations by analytic continuation to imaginary Euclidean energy
(which is the approach used in ref. [2]).
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For the kinematic region of interest,0< E2−P2 < 16m2, it is straightforward to show that the
only singularity inI is the explicit pole in the first term inside the braces in eq. (3.3), which occurs
at those values ofE for which there is a term in the summation withωk + ωPk = E. Since this
singularity leads to finite-volume corrections which decrease like powers of the volume, we need
to examine the first term in more detail.

With Lorentz transformed variables,

k∗‖ = γ (k‖−βωk), k̃∗⊥ = k̃⊥ and ω∗
k =

√
k∗2 +m2 = γ (ωk−βk‖) . (3.4)

we rewrite the first term (which we callI1) in the form

I1 =−i
1
L3

1
E∗ ∑

~k

1
2ωk

f ∗(~k∗)
E∗−2ω∗

k

= −i
1
L3

1
2E∗ ∑

~k

ω∗
k

ωk

f ∗(~k∗)
q∗2−k∗2

E∗+2ω∗
k

4ω∗
k

, (3.5)

where f ∗ is the functionf rewritten in terms of the centre-of-mass variables. We now apply the
summation formulae from sec.2,

I1 =−i
1

2E∗
P

∫
d3k∗

(2π)3

f ∗(~k∗)
q∗2−k∗2

E∗+2ω∗
k

4ω∗
k

− i
2E∗

∞
∑
l=0

l

∑
m=−l

f ∗lm(q∗)cP
lm(q∗2) . (3.6)

In order to isolate the finite-volume correction, we replace the principal-value integral in
eq. (3.6) by the corresponding integral with the Feynmaniε prescription in the propagator and
a “delta-function” term:

I1 =−i
1

2E∗

∫
d3k∗

(2π)3

f ∗(~k∗)
q∗2−k∗2 + iε

E∗+2ω∗
k

4ω∗
k

+
q∗ f ∗00(q

∗)
8πE∗

− i
2E∗

∞
∑
l=0

l

∑
m=−l

f ∗lm(q∗)cP
lm(q∗2) .

Note that the “delta-function” term picks out thel = 0 part of f ∗. Observing that the first term
in eq. (3.7) is exactly the infinite volume expression forI1 in Minkowski space (after retracing the
steps in the derivation above), we arrive at the finite-volume correction of loop integrals,

I = I∞ + IFV , IFV =

{
q∗ f ∗00(q

∗)
8πE∗

− i
2E∗

∞
∑
l=0

l

∑
m=−l

f ∗lm(q∗)cP
lm(q∗2)

}
.

Since each loop integral (sum) in fig.1 contains an infinite volume part and the finite volume
correction, we can rearrange the expansion according to the number of insertions of the latter.
Ignoring the zero insertion term, which is irrelevant to the pole structure of the correlation function,
we can represent the series as in fig.2, leading to the general result:

C̃FV
~P

(E) =−A′ F A+A′ F (iM/2) F A+ · · ·=−A′ F
1

1+ iMF/2
A. (3.7)

Here we have taken into account the factor ofi2 dropped from the loop in the previous section,
as well as symmetry factors of1/2 arising from the identical nature of the particles.A andA′

represent the overlap ofσ with asymptotic two-pion states with definite angular momentum.F is
a kinematic factor obtained fromIFV :

Fl1,m1; l2,m2
=

q∗

8πE∗

(
δl1l2

δm1m2
− i

4π
q∗

∞
∑
l=0

l

∑
m=−l

√
4π

q∗ l cP
lm(q∗2)

∫
dΩ∗Y∗l1,m1

Y∗l ,mYl2,m2

)
, (3.8)
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Figure 2: Contributions to the volume dependent part of theσ correlator,C̃FV
~P

. The notation is as in fig.1
except that the filled circles represent the full scattering amplitude,M, given by a geometric sum of any
number of insertions of the kernelK, and the vertical dashed lines indicate that the on-shell finite volume
part,IFV , has been used for the loop integral. The quantitiesA andA′ are defined in the text.

andM is the on-shell scattering amplitude:

Ml1,m1; l2,m2
= δl1l2

δm1m2

16πE∗

q∗

(
exp[2iδl1

(q∗)]−1
)

2i
, (3.9)

Now, we can determine the final quantization condition:

det(1+ iMF/2) = 0. (3.10)

Solving this after truncation of the partial wave expansion leads to results which can be shown to
be equivalent to those of ref. [7].

4. Conclusion

We have provided a field theoretic derivation of the finite volume energy shift for two hadron
states in a moving frame, confirming the result obtained by ref. [7]. Our result can be used to
determine the finite-volume corrections to matrix elements of local composite operators with an
initial and/or final state consisting of two hadrons, thus generalizes the Lellouch-Lüscher factor to
moving frames [8, 9]. The path is now open to numerical studies of two pion energies and matrix
elements in a moving frame, which, as discussed in refs. [7, 8, 9], simplifies a number of
important applications.
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