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Moments of generalised parton distributions can be related to off-forward matrix elements of local
operators. We calculate a few of the leading twist matrix elements for the pion on the lattice. The
simulations are performed using two flavours of dynamical fermions and a range of pion masses
from 550 to 1090 MeV. Our lattice spacings and spatial volumes lie in the range 0.07–0.12 fm
and (1.6–2.2 fm)3, respectively. Key features of our investigation are the use of O(a) improved
Wilson fermions and non-perturbative renormalisation.
We present first results for the two lowest moments of the generalised parton distributions of the
pion and compare the pion electromagnetic form factor Fπ to experimental data. Good agreement
is found between lattice data and experiment.
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1. Introduction

The pion as a near Goldstone boson is essential for chiral symmetry breaking. It also plays
an important role for theoretical models since it is the simplest spinless meson. However, the
understanding of the structure of the pion is still limited. On the experimental side results from
electroproduction measurements, e.g. e p→ eπ+ n, are available and provide information about the
pion electromagnetic form factor Fπ . Parton distribution functions on the other hand are obtained
from Drell-Yan dilepton production processes, π±N → µ+µ−X , and prompt photon production,
i.e. π±N → γ X . For some time now it has been possible to explore the structure also from first
principles using lattice QCD. Initial studies by Martinelli et al. and Draper et al. were performed
for the pion form factor and parton distributions [1]. The main interest recently was on the pion
form factor [2, 3, 4]. In this contribution we investigate generalised parton distributions (GPDs) of
the pion [5, 6, 7].

GPDs can be seen as a generalisation of parton distributions and form factors. They contain
both as limiting cases but go beyond that and include new information about the structure of the
pion that is not yet accessible by experiments. This work is an extension of earlier studies [8] and
complements current efforts on the nucleon structure [9, 10].

2. Generalised Form Factors

GPDs parametrise off-forward matrix elements probing single quarks inside hadrons. Hence
the respective structure of hadrons can be described by GPDs. In case of the pion, the vector
operator matrix elements on the light-cone with the corresponding GPDs H q

π read

Hq
π(x,ξ , t) =

1
2n ·P

∫ dλ
2π

eiλn·Px 〈π(p′)
∣

∣ψq(−
λ
2

n) n · γ U ψq(
λ
2

n) |π(p)〉 , (2.1)

where the kinematical variables are the average momentum of the incoming and outgoing pion,
Pµ = 1

2(p′µ + pµ ), the momentum transfer ∆µ = (p′µ − pµ ) and its invariant form t = ∆2. The
fractional longitudinal momentum transfer is ξ = −(n ·∆)/(2n ·P) with a light-like vector nµ . A
Wilson line U is included to ensure gauge invariance. Important properties of H q

π(x,ξ , t) are:

• In the forward limit, ∆→ 0, one recovers the usual parton distributions. We have H q
π(x,0,0) =

q(x) for x > 0 and Hq
π(x,0,0) =−q(−x) for x < 0.

• The first moment in x is related to the pion form factor. Starting from a flavour dependent
GPD, the full form factor including all quark flavours can be be obtained using isospin rela-
tions [6]. Assuming we probe u-quarks within a π+ we find

∫

dxHu
π+(x,ξ , t) = Fπ(t).

• Taking the Fourier transform in ∆⊥ results in a probabilistic interpretation in coordinate
space. One finds (2π)−2 ∫

d2∆⊥ e−ib⊥·∆⊥Hq
π(x,ξ = 0, t = −∆2

⊥) = qπ(x,b⊥) which is the
probability of finding a quark q with momentum fraction x and impact parameter b⊥ in the
pion [11].

Since Eq. (2.1) is a light-cone matrix element, it cannot be calculated on the lattice directly. Instead,
the operator product expansion is applied to obtain matrix elements of local operators. These matrix
elements can then be parametrised by generalised form factors (GFFs), which are proportional to
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moments of the GPDs [5, 6]. The GFFs thus provide an equivalent description of the hadron
structure. The operators O{µµ1µ2...µn} and the decomposition of their matrix elements into GFFs
corresponding to Eq. (2.1) read (assuming from now on that we probe u-quarks within a π +)

〈

π+(p′)
∣

∣O
{µµ1µ2...µn}

∣

∣π+(p)
〉

=
〈

π+(p′)
∣

∣u(0)γ{µ i
↼⇀
Dµ1 i

↼⇀
Dµ2 . . . i

↼⇀
Dµn} u(0)

∣

∣π+(p)
〉

=

2 P{µ Pµ1 . . .Pµn}An+1,0(∆2)+ 2
n

∑
i=1
odd

∆{µ ∆µ1 . . .∆µiPµi+1 . . .Pµn}An+1,i+1(∆2) , (2.2)

where n labels the number of covariant derivatives
↼⇀
D = 1

2(
⇀
D−

↼
D) and {. . .} indicates symmetri-

sation of indices and subtraction of traces. The GFFs are denoted by An,i. This decomposition is
constrained by Lorentz invariance, parity, and time reversal, the latter requiring an even number
of momenta ∆. The simplest case n = 0 of Eq. (2.2) yields the pion electromagnetic form factor
〈π(p′)|Oµ |π(p)〉= 2Pµ Fπ(∆2), thus we have A1,0 = Fπ .

3. Lattice Techniques

The calculation of the matrix elements and the extraction of GFFs in (2.2) is done in analogy
to the nucleon case. We compute pion two- and three-point functions in order to isolate the observ-
ables in question [9, 10]. Inserting complete sets of energy eigenstates and employing translational
invariance, the three-point function takes the following form for t < tsink

CπOπ(t, p′, p) =
〈

π(p′)
∣

∣O(t) |π(p)〉
〈0|ηπ(~p′) |π(p′)〉〈π(p)|η†

π(~p) |0〉
2Ep′ 2Ep

e−Ep′ (tsink−t)−Ep t + . . . ,

(3.1)
where we omit excited states and set tsource = 0. Here ηπ(~p) is the interpolating field for a pion with
momentum ~p and energy Ep the corresponding energy. We use both pseudo-scalar and axial vector
interpolators. The two-point function, again omitting higher energy states, has the usual form

Cππ(t, p) =
〈0|ηπ(~p) |p〉〈p|η†

π(~p) |0〉
2Ep

e−EpT/2 cosh[Ep(T/2− t)]+ . . . , (3.2)

with the time extent T of the lattice. We then construct an appropriate ratio of two- and three-point
functions to eliminate the exponential time behaviour and the overlap factors such as 〈0|ηπ(~p′) |π(p′)〉
that appear in Eq. (3.1). In doing so we avoid having to fit the energies Ep and the normalisation
separately. We choose tsink = T/2 so that the three-point correlator is symmetric under t → T − t.
The ratio that can then be used is

〈p′|O(t) |p〉
4
√

Ep′Ep
=

CπOπ(t, p′, p)

Cππ(tsink, p′)

(

Cππ(tsink− t, p)Cππ(t, p′)Cππ(tsink, p′)
Cππ(tsink− t, p′)Cππ(t, p)Cππ(tsink, p)

)
1
2

. (3.3)

The l.h.s. now contains the matrix element we are interested in. Hence we can extract the GFFs
from matching the lattice ratio (3.3) to its continuum parametrisation Eq. (2.2). Using all momen-
tum combinations and operators available, this results in an over-constrained fit of the An,i(∆2).

Contributions from excited states with energy E ′ to the ratio (3.3) are suppressed as long as
tsink− t À 1/E ′ and t À 1/E ′. However, because of the exponential decay of the pion two-point
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function, the signal at t = tsink for non-vanishing momenta is poor and can take negative values.
This causes problems when taking the square root. We can partly circumvent this by shifting the
two-point function, i.e. changing Cππ(tsink, p)→Cππ(tsink− tshift, p). This shift is compensated by
an extra factor of (cosh(Ep tshift))

−1 to the two-point function.
The operators we use are all constructed to be traceless and symmetric. Along with more

details like transformation and mixing properties, they are given in [12].

4. Results

Our simulation is performed with two flavours of non-perturbatively clover-improved dynami-
cal Wilson fermions and Wilson glue. We use operators with up to three derivatives [12] and exploit
the full Clifford-Algebra, i.e. we calculate (pseudo-) scalar, (pseudo-) vector, and tensor currents.
The combinations involving γ5 should vanish due to the symmetry properties of (2.2) under parity
and we use this as a check for our calculations. The large number of momentum combinations for
the over-constrained fit to the GFFs is achieved by using three sink momenta ~p′ and 17 momentum
transfers~∆ = ~p′−~p, which in lattice units ×L/2π are given by:

~p′: (0,0,0), (0,−1,0), (−1,0,0),

~∆ : (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,1), and permutations w.r.t. the components.

A list of further parameters of our simulation can be found in Table 1. The configurations have
been generated within the QCDSF and UKQCD collaborations. The connection to physical values
is done using the Sommer scale with r0 = 0.5 fm and non-perturbative renormalisation [13]. The
results have finally been converted to the MS-scheme at µ = 2GeV.

Comparing both interpolating fields for the pion, we find a cleaner signal for the axial vector
current. Using this interpolator we extract values for A1,0 and A2,0. Results for A1,0, the pion elec-
tromagnetic form factor, can be found in Fig. 1. We use a monopole ansatz (1− t/m2

mono)
−1 to fit

our data and find that the monopole mass decreases with decreasing pion masses as expected. A lin-
ear chiral extrapolation of the monopole masses, shown in Fig. 2, provides a mass of 736(36)MeV
in the chiral limit. This is in nice agreement with experimental data, as shown by the bottom curve
in Fig. 1. Scaling violations are expected to be small and will be investigated in more detail at a
later stage when the analysis is completed for all lattices.

In Fig. 3 we show A1,0 and A2,0 for one of our data sets, both normalised to 1 at t = 0 for better
comparison. The flattening of the slope for higher moments corresponds to a narrower spatial
distribution of partons within impact parameter space for x→ 1 [11].

β 5.20 5.20 5.20 5.25 5.25 5.25 5.29 5.29 5.29 5.40 5.40 5.40
κ .13420 .13500 .13550 .13460 .13520 .13575 .13400 .13500 .13550 .13500 .13560 .13610

mπ [GeV] .94 .777 .578 .92 .774 .553 1.09 .867 .716 .969 .788 .588
L [fm] 1.96 1.68 1.59 1.69 1.56 2.19 1.66 1.53 2.16 1.97 1.88 1.79
mπ · L 9.36 6.64 4.66 7.89 6.11 6.14 9.23 6.74 7.85 9.68 7.48 5.3

Table 1: Our set of lattices available. Highlighted columns mark the current data points.
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Figure 1: Pion form factor Fπ(t) for our dif-
ferent lattices (with different offsets). The pion
masses decrease from top to bottom with fitted
monopole masses: 1066(43)MeV, 1005(18)MeV,
993(28)MeV, 926(24)MeV, 892(32)MeV, and
817(26)MeV. Also included is the extrapolation to
the physical pion mass with a comparison to exper-
imental data (black curve and symbols).
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Figure 2: Linear chiral extrapolation of the
monopole masses to the physical mπ .
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Figure 3: First and second moment, A1,0 and A2,0,
of the pion GPD [β = 5.29, κ = 0.13400].

From the value of A2,0 at t = 0 we can determine the quark content and the corresponding
momentum fraction in the pion. For the data set shown in Fig. 3 the renormalised value for the
second moment is 2A2,0(t = 0) = 0.631(16), meaning that the quarks and antiquarks within the
pion carry about two thirds of the pion’s momentum.

5. Outlook

The above analysis will be completed for all our lattices, and we have more data for higher
moments with up to three derivatives. The calculations include not only the vector operators,
but also the tensor combinations mentioned above. We will furthermore be able to increase our
statistics by using the symmetry properties w.r.t. tsink of our three-point correlation function.
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