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We present analytical results concerning lattice calculations of the moments of the twist-two ma-

trix elements. First, we discuss the determination of higher-moments of the deep-inelastic hadron

structure functions. By using a fictitious heavy quark, direct calculations of the Compton scat-

tering tensor can be performed in Euclidean space that allow the extraction of the moments of

structure functions. This overcomes issues of operator mixing and renormalisation that have so

far prohibited lattice computations of higher moments. This approach is especially suitable for

the study of the twist-two contributions to isovector quark distributions, which is practical with

current computing resources. This method is equally applicable to other quark distributions and

to generalised parton distributions. By looking at matrix elements such as
�
π ��� T �V µ � x � Aν � 0 �	�	� 0 


(where V µ and Aν are vector and axial-vector heavy-light currents) within the same formalism,

moments of meson distribution amplitudes can also be extracted. Second, we comment on finite-

volume effects in the lattice calculation of the twist-two matrix elements.
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1. Introduction

Lattice QCD offers the prospect of exploring the structure functions probed in deeply inelastic
scattering (DIS) and other high-energy experiments from first principles. The structure functions
describe the hadronic part of the DIS process, viz., the hadronic tensor

W µν
S � p � q ���

�
d4x eiq � x � p � S �
	 Jµ � x ��� Jν � 0 �
��� p � S ��� (1.1)

where p and S are the momentum and spin of the external state, q is the momentum transfer between
the lepton and the hadron, and Jµ is the electromagnetic current. Using the optical theorem, W µν

S

can be related to the imaginary part of the forward Compton scattering tensor

T µν
S � p � q ���

�
d4x eiq � x � p � S � T 	 Jµ � x � Jν � 0 �
��� p � S ��� (1.2)

Since lattice QCD is necessarily formulated in Euclidean space, direct calculation of the struc-
ture functions is challenging because of the analytical continuation to Minkowski space that is
required. In addition, such a calculation would involve all-to-all light-quark propagators, and is
therefore numerically demanding. For this reason, beginning with pioneering works, lattice studies
of the deep-inelastic structure of hadrons have focused on calculations of matrix elements of local
operators that arise from the light-cone operator product expansion (OPE) of the currents

T 	 Jµ � x � Jν � 0 �
��� ∑
i � n � i � x2 � µ2 � xµ1 ����� xµn � µνµ1 � � � µn

i � µ ��� (1.3)

where the � i are the perturbatively calculable Wilson coefficients that incorporate the short-distance
physics, and the sum is over all local operators, � µνµ1 � � � µn

i with the correct symmetries. µ is
the renormalisation scale. This expansion enables the investigation of T µν

S via the knowledge of
hadronic matrix elements of local operators. The analytical continuation of these matrix elements
from Euclidean space to Minkowski space is straightforward. However, a number of difficulties
arise in this approach due to the lattice regularisation. Firstly, the non-zero lattice spacing breaks
the symmetry group of Euclidean space-time from O � 4 � to the discrete hyper-cubic subgroup H � 4 � ,
consequently modifying the transformation properties of the local operators in the OPE. In general,
operators belonging to different irreducible representations of O � 4 � , which span the right-hand side
of the OPE in Eq. (1.3), mix unavoidably in the lattice theory since H � 4 � has only a finite set of
irreducible representations. For twist-two (twist = dimension - spin) contributions, this becomes
particularly severe for operators of spin n � 4 as they mix with lower dimensional operators and
the mixing coefficients contain power divergences. Currently this restricts the available lattice cal-
culations to operators of spin n � 1 � 2 � 3 � 4. For higher-twist operators, such power divergences
are generally unavoidable. A second issue is that the matching of the lattice regularisation to con-
tinuum renormalisation schemes, in which the Wilson coefficients are calculated, becomes more
involved as n increases.

In this talk, we present a strategy, as proposed in Ref. [1] for obtaining higher matrix ele-
ments of higher-spin, twist-two operators in Eq. (1.3). We also discuss finite-volume effects in the
calculation of these matrix elements [2].

361 / 2



P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

Aspects of twist-two matrix elements C.-J.David Lin

2. Euclidean operator product expansion in lepton-hadron deep-inelastic scattering

Our approach is based upon directly studying the OPE on the lattice, as was first investigated
in kaon physics in Ref. [3]. A similar technique has also been applied to determine Wilson co-
efficients non-perturbatively [4] and extract the lowest moment of the isovector twist-two quark
distribution [5] (our method is related to this latter work but improves on it in a number of ways).
In our proposal, one simulates the Compton scattering tensor using lattice QCD, with currents cou-
pling the physical light quarks, ψ � x � , present in the hadron to a non-dynamical (purely valence),
unphysically heavy quark, Ψ � x � . The introduction of this heavy quark significantly simplifies the
calculation of isovector matrix elements because it removes the requirement of all-to-all propaga-
tors. After performing an extrapolation to the continuum limit, the lattice data for the Compton
tensor are compared to the predictions of the OPE in Euclidean space to extract the matrix ele-
ments of local operators in Eq. (1.3), directly in the continuum renormalisation scheme in which
the Wilson coefficients are calculated. This approach also removes the power divergences, thereby
enabling extraction of matrix elements of higher spin (n � 4) operators for twist-two operators
with a simple renormalisation procedure. These matrix elements determine the Mellin moments
of the structure functions which are identical in Euclidean space and Minkowski space and their
analytical continuation is trivial. Finally, the chiral and infinite volume extrapolations can now be
performed at the level of the local matrix elements using chiral perturbation theory.

We consider fictitious currents that couple light up and down quarks to unphysical heavy
quarks of mass mΨ. We focus on a purely vector coupling, leaving the discussion of other pos-
sible currents to the end of the section. We define

Jµ
Ψ �ψ � x ��� Ψ � x � γ µ ψ � x ��� ψ � x � γ µ Ψ � x ��� (2.1)

and construct the Euclidean Compton scattering tensor

T µν
Ψ � ψ � p � q ��� ∑

S

� p � S � tµν
Ψ �ψ � q � � p � S ��� ∑

S

�
d4x eiq � x � p � S � T �

Jµ
Ψ �ψ � x � Jν

Ψ �ψ � 0 ��� � p � S ��� (2.2)

(henceforth all momenta are Euclidean), with the constraint

ΛQCD � mΨ �
	 q2 � 1
â
� (2.3)

where â is the coarsest lattice spacing used in the calculation. Secondly, the non-dynamical nature
of the heavy quark automatically removes many contributions (for example, so-called “cat’s ears”
diagrams – see Fig. 1(d) below) that are higher-twist contaminations in traditional DIS.

In the limit q2 � ∞ or mΨ
� ∞, T µν

Ψ � ψ is given by the leading-twist contribution, the “handbag
diagrams” in Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)1, which involves purely gluonic
operators after the OPE, is strongly suppressed in our approach and is completely absent in the
study of the OPE of the isovector Compton scattering tensor

T µν
Ψ � v � T µν

Ψ � u � T µν
Ψ � d � (2.4)

1In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in
which these quarks have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions
can be disentangled from their different q2 behaviour.

361 / 3



P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

Aspects of twist-two matrix elements C.-J.David Lin

P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

(a) (b)

P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

P
o
S
(
L
A
T
2
0
0
5
)
3
6
1

(c) (d) (e)

Figure 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the
leading twist contributions. Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the
isovector combination, Eq. (2.4). Diagram (d) (the “cat’s ears diagram”) is higher-twist and absent in our
analysis. Diagram (e) includes leading- and higher-twist terms and is discussed in the main text. The thick
lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light currents and the large
shaded regions to the various parton distributions.

This makes the extraction of moments of the isovector quark distributions practical, and we focus
on this case here.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical
nature of the fictitious heavy quark entirely eliminates the higher-twist contributions involving
more than one quark propagator between the currents, e.g., the “cat’s ears diagram” in Fig. 1
(d). The diagrams in Fig. 1 (e) contain pieces that contribute to the twist-two operators, and also
higher-twist terms which are small and can be treated as fit parameters in the procedure. Also,
we replace the heavy-quark mass by the heavy-light meson mass which is entirely free of the
renormalon ambiguity. This introduces an additional unknow parameter, the binding energy, into
the procedure. In this talk, we only give a specific example, in which we choose the rest frame of

the proton, p � � 0 � 0 � 0 � i M � and parameterise q � � 0 � 0 ��� q2
0 � Q2 � i q0 � . In this case, the symmetric

combination of � µ � ν � ��� 3 � 4 � is

T � 34 �
Ψ � ψ � p � q � � ∞

∑
n � 2 � even

An
ψ � µ2 � f � n ��� (2.5)

where

f � n � � � � q2
0 � Q2ζ n � 2

q0 	 � n 
Q2

Q2
� n � 1 � ηC � 2 �n 
 1 � η � � 4η2C � 3 �n 
 2 � η �

n � n � 1 � � ��� �n η
n

C � 2 �n 
 1 � η ��� (2.6)

� q0

Q2 	 � n 
Q2

Q2

n � n � 2 � C � 1 �n � η � � 2η � 2n � 3 � C � 2 �n 
 1 � η � � 8η2C � 3 �n 
 2 � η �
n � n � 1 � �

2 � � �n � C � 1 �n � η � � 2
η
n

C � 2 �n 
 1 � η ��� ��� �
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and An
ψ � µ2 � is defined as

∑
S

� p � S �ψγ � µ1 � iDµ2 ������� � iDµn � � ψ � traces � p � S � � An
ψ � µ2 ��	 pµ1 ����� pµn � traces � � (2.7)

The C � λ �n are the Gegenbauer polynomials arising from summing the target mass effects, and

ζ � 	 p2q2
Q2
� η � p � q

	 p2q2
� Q̃2 � Q2 � M2

Ψ � αMΨ � β � (2.8)

where α is the binding energy and β parameterises the higher-twist contributions. As shown in
Ref. [1], by varying Q2, q0 and MΨ, one can hope to extract several moments from Eq. (2.5).

3. Meson distribution amplitudes from current-current matrix elements

A further application of the approach we have outlined is in computing moments of meson
distribution amplitudes, φM . In the lattice approach, we can extract moments of distribution ampli-
tudes in the same way as DIS determines moments of parton distributions; for example, we may
study the matrix element � π � � T 	V µ

Ψ �ψ � x � Aν
Ψ �ψ � 0 �
� � 0 � , where V µ

Ψ �ψ and Aµ
Ψ �ψ are fictitious vector and

axial vector heavy-light currents. This process is described by the tensor

Sµν
Ψ �ψ � p � q ���

�
d4xeiq � x � π � � p � � T 	V µ

Ψ �ψ � x � Aν
Ψ � ψ � 0 �
� � 0 ��� (3.1)

The OPE of the two currents leads to the matrix elements of twist-two operators that determine the
moments of the pion distribution amplitude:

� π � � p � �ψγ � µ1 γ5 � iD � µ2 ����� � iD � µn � ψ � 0 � � fπ
� ξ n 
 1 � π 	 pµ1 ����� pµn � traces � � (3.2)

where

� ξ n � π � � 1

0
dξ ξ nφπ � ξ ��� (3.3)

These matrix elements can be determined by studying the various components of Sµν
Ψ �ψ for

varying mΨ and qµ . As in the DIS case, many higher-twist contributions are absent because of the
valence nature heavy quark and the problems that plague direct evaluation of higher moments due
to the lattice cutoff are eliminated. Since only the zeroth (decay constant) and second moments of
the pion distribution amplitude have been investigated in the direct approach, any information on
higher moments will be useful in constraining the distribution amplitude from QCD. For flavour
non-diagonal mesons (e.g. π

�

, K
� � 0), extraction of the tensor Sµν

Ψ �ψ on the lattice only requires the
computation of the Wick contraction shown in Fig. 2.

4. Finite-voume effects of the twist-two matrix elements

In Ref. [2], finite-volume effects in lattice calculations of the twist-two matrix elements are es-
timated using heavy-baryon chiral perturbation theoy, in quenched, partially-quenched (N f � 2 � 3)
and full QCD. Here we only present a specific example of this calculation, namly, the Nf � 2 full
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Figure 2: Extraction of moments of meson distribution amplitudes. Here, the light-shaded circle denotes the
pion interpolating operator and the dark circle and dark square indicate the vector and axial-vector currents,
respectively.

Figure 3: Finite volume effects in QCD calculations of gA at Mπ � 337 MeV (as appropriate for the recent
LHP simulations [6]). L � 2 fm corresponds to MπL � 3 � 4. The shaded region corresponds to varying
1 � 0

�
gA

�
1 � 5, 0

� � g∆N � �
2. “Total” means the volume effects predicted by the effective theory with a

specific choice of couplings, and the other curves indicate contributions from various one-loop diagrams.

QCD results for the nucleon axial coupling gA. Figure 3 shows finite-volume effect in this quantity
at a fixed pion mass relevant to the numerical simulation performed by the LHP Collaboration [6].
The shaded region in this plot corresponds to the variation of unknown couplings in the effective
theory. It is clear that volume effects can be as large as 10%, depending on the values of these
couplings. However, as reported at this conference [6], lattice data seem to suggest that volume
effects are small for this quantity.
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