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1. INTRODUCTION

Information about the internal structure of the nucleon is encoded in its structure functions.
While they cannot be computed directly on the lattice, the operator product expansion (OPE) pro-
vides a connection between their moments and nucleon matrix elements of local operators. For
instance, for the unpolarised structure function F1, the OPE reads

2
� 1

0
dxxn � 1F1 � x � Q2 	�
 ∑

f
E � f 
F1 � nv � f 
n � O � 1 � Q2 	 � (1.1)

where f denotes the quark flavour, E � f 
F1 � n is the (perturbative) Wilson coefficient and the matrix

element v � f 
n is defined by�
N ���p 	��O � µ1 � � � µn �� f 
 � traces �N ���p 	���
 2v � f 
n � pµ1 ����� pµn � traces 	 � (1.2)

with the operator

Oµ1 � � � µn� f 
 
 ψ̄ f γ µ1 �Dµ2 ����� �Dµn ψ f
� (1.3)

Similar relations hold for the other structure functions, see e.g. [1] for details. Both the matrix
element v � f 
n and the Wilson coefficient E � f 
F1 � n depend upon the choice of a renormalisation scheme
and scale; only in their product, these dependencies cancel.

2. LATTICE SIMULATION

We use the overlap operator given by

D 
 ρ � 1 � mq

2ρ � � 1 � mq

2ρ
	 γ5sgn � HW � � ρ 	�	! � (2.1)

where HW � � ρ 	"
 γ5 � DW � ρ 	 , DW being the Wilson Dirac operator. We approximate the sign
function appearing in (2.1) by minmax polynomials [2]. For the gauge part we chose the Lüscher-
Weisz action [3]

S #U $ 
 6
g2 % c0 ∑

plaq

1
3 ReTr # 1 � Uplaq $ � c1 ∑

rect

1
3 ReTr # 1 � Urect $ � c2 ∑

par

1
3 ReTr # 1 � Upar $'&(� (2.2)

with coefficients c1, c2 (c0 � 8c1 � 8c2

 1) taken from tadpole improved perturbation theory [4].

We ran our computations at two lattice spacings, see table 1. The scale has been set from the pion
decay constant, details are given in [5]. The parameter ρ in (2.1) was set to 1 � 4.

V β a � fm 	 confs.
16332 8 � 00 0 � 153 � 3 	 fm 300
24348 8 � 45 0 � 105 � 2 	 fm 200

Table 1: Parameters of the gauge configurations used.
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In order to remove O � a 	 errors from the three-point functions, we employ the method of [6],
which amounts to replacing propagators D � 1Ψ by 1

1 � m
2ρ

D � 1Ψ � 1
2 � 1 � m

2ρ 
 Ψ. Jacobi smeared point

sources [1] with parameters Ns

 50 and κs


 0 � 21 have been used in order to obtain a good overlap
with the ground state.

The computation of matrix elements follows the procedure outlined in [1]: We form the ratio

R 
 �
N � tsink

	 O � τ 	 N̄ � tsource
	���

N � tsink
	 N̄ � tsource

	�� � (2.3)

from which the matrix element can be extracted in the region tsource ) τ ) tsink . We always set
tsource


 0 and tsink

 9 (tsink


 13) on the β 
 8 � 0 (β 
 8 � 45) configurations (in lattice units),
which corresponds to a distance between source and sink of 1 � 4 fm.

The matrix elements we are considering are listed in table 2, along with the operators used for
their determination, where we use the operators (1.3) and

Oµ1 � � � µn
5 � � f 
 
 ψ̄ f γ5γ µ1 �Dµ2 �����*�Dµn ψ f

� (2.4)

We compute only flavour non-singlet matrix elements, since in this case there is no contribution
from disconnected diagrams.

3. NON-PERTURBATIVE RENORMALISATION

The operators appearing inside the three-point functions have to be renormalised. For gA



∆u � ∆d, the operator to be used is the axial current Aµ , the renormalisation of which is particularly
simple because it does not depend on a renormalisation scheme or scale. It can be obtained from a
Ward identity [7] as

ZA

 lim

mq + 0
lim
t + ∞

2mq

mπ

�
P � t 	 P � 0 	���
A4 � t 	 P � 0 	�� � (3.1)

The renormalisation constants of the other operators under consideration are logarithmically
divergent. We have computed them in the RI , � MOM-scheme [8]. In this scheme, the renormali-
sation condition is formulated in terms of quark Greens functions in Landau gauge with an operator
insertion at zero momentum transfer:

CO � p 	�
 1
V ∑

x � y� z e � ip � x � y 
 � ψ � x 	 O � z 	 ψ̄ � y 	�� � (3.2)

Matrix Element Operator
gA ψ̄γ5γ2ψ
gT ψ̄γ5σ 24ψ
v2 O44 � 1

3 � O11 � O22 � O33  
a1

1
2 � O24

5 � O42
5
 

Table 2: Operators used in the three-point functions.
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Figure 1: Left: The renormalisation constant ZRI -/. MOM
v2b 0 µ 1 , Right: The same, but with the renormalisation

group running removed according to (3.6).

From this quantity, the amputated vertex function ΓO is formed:

ΓO � p 	�
 S � 1 � p 	 CO � p 	 S � 1 � p 	 � (3.3)

with the quark propagator

S � p 	�
 1
V ∑

x � y e � ip � x � y 
 � ψ � x 	 ψ̄ � y 	�� � (3.4)

The renormalisation condition at scale µ is

Zψ � µ 	 ZO � µ 	 ΠO � ΓO � p 	�	322 p2 4 µ2

 1 � (3.5)

with the projector ΠO � Γ 	5
 1
12 tr 6 Γ � 1

O � Born � p 	 Γ 7 . The wavefunction renormalisation constant Zψ

has been determined from the relation ZψZAΠA � ΓA
	�
 1.

In order to convert the results to the MS-scheme, we first determine the renormalisation group
invariant renormalisation constant ZRGI

O :

ZRGI
O


 6 ZRI - � MOM � RGI
O � µ 	 7 � 1

ZRI - � MOM
O � µ 	 � (3.6)

and then convert to the MS-scheme at scale µ , (we always use µ , 
 2GeV):
ZMS

O � µ , 	�
 ZMS � RGI
O � µ 	 ZRGI

O with the conversion functions

Z 8 � RGI
O � µ 	�
 6 2b1g 8 � µ 	 2 7 � dO 9 1

2b1 exp : � g ; � µ 

0

dξ < γS
O � ξ 	

β S � ξ 	 � dO � 1
b1ξ =?> � (3.7)

The coefficients of the β and γ functions are taken from [9, 10].

In fig. 1 we plot ZRI - � MOM
v2b

and ZRGI
v2b

for β 
 8 � 45. From the latter plot, we read off ZRGI
v2b



2 � 6 from the plateau region 8GeV2 ) p2 ) 15GeV2. Using ZMS � RGI

v2b � 2GeV 	"
 0 � 737, we obtain
ZMS

v2b

 1 � 92. The renormalisation constants for all operators we need are shown in table 3. A

comparison with results obtained in one-loop tadpole-improved lattice perturbation theory [11, 12]
shows large discrepancies, especially for the operators with one derivative.
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Figure 2: The nucleon’s axial charge (left plot) and tensor charge (right plot) as a function of the squared
pion mass

4. RESULTS

Our results for the axial charge gA are displayed in fig. 2 (left). A linear extrapolation to the
chiral limit yields gA


 1 � 37 � 5 	 at β 
 8 � 0 and gA

 1 � 14 � 5 	 at β 
 8 � 45. The tensor charge gT



δu � δd is plotted in fig. 2 (right); in this case, linear extrapolations to mq


 0 yield gT

 1 � 35 � 4 	

at β 
 8 � 0 and gT

 1 � 18 � 5 	 at β 
 8 � 45.

The results for the matrix elements vu � d
2


 �
x � u � d and au � d

1

 2

�
x � ∆u � ∆d are shown in fig. 3,

together with the phenomenological values. In both cases, there is almost no dependence on the
quark mass visible. In the range mπ @ 400MeV, our results agree with previous results obtained
from improved Wilson fermions [1].

5. CONCLUSIONS

We have determined the flavour non-singlet nucleon matrix elements gA, gT , v2 and a1 from
quenched overlap fermions. The renormalisation has been done nonperturbatively. Comparing the
results at the two values for the lattice spacing we have, we find significant discretisation effects,
in contrast with the situation for hadron masses [5].

While our results are in good agreement with earlier determinations, there remains a rather

Operator
β 
 8 � 0 β 
 8 � 45

pert. nonp. pert. nonp.
OAµ 1.36 1 � 59 1 � 30 1 � 42
OgT 1.36 1 � 73 1 � 33 1 � 54
Ov2 1.33 2 � 11 1 � 39 1 � 92
Oa1 1.34 2 � 21 1 � 40 1 � 98

Table 3: Comparison between the renormalisation constants ZMS
O 0 2GeV 1 obtained non-perturbatively and

in lattice perturbation theory.
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Figure 3: The nucleon matrix elements au . d
1 (left plot) and vu . d

2 (right plot) as functions of the squared pion
mass (MS, 2GeV).

large discrepancy to the phenomenological values for v2 and a1, even at the lowest quark masses
we can reach at present.
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