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Suppose General Relativity, provocatively governed by a dimensional coupling constant, is a

spontaneously induced theory of Gravity. Invoking the Zee mechanism, we represent the recip-

rocal Newton constant by a Brans Dicke scalar field, and let it damped oscillating towards its

General Relativistic VEV. The corresponding cosmological evolution, in the Jordan frame, aver-

agely resembles the familiar dark radiation -> dark matter -> dark energy domination sequence.

The fingerprints of the theory are fine ripples, hopefully testable, in the FRW scale factor; they

die away at the strict General Relativity limit. Also derived is the spherically symmetric static

configuration associated with spontaneously induced General Relativity. At the stiff scalar po-

tential limit, the exterior Schwarzschild solution is recovered. However, due to level crossing at

the would have been horizon, it now connects with a novel dark core characterized by a locally

varying Newton constant. The theory further predicts light Einstein-style gravitational corpuscles

(elementary particles?) which become point-like at the GR-limit.
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Suppose General Relativity (GR) is spontaneously induced. In which case, it makes sense to
promote the (reciprocal) Newton constant to the level of a scalar fieldG−1(x), and let it damped
oscillate towards its General Relativistic vacuum expectation value< G−1(x) >= G−1. The Zee
realization of such an idea calls for a generalized (explicitly broken conformal invariance) Brans-
Dicke theory, where the a Brans-Dicke Lagrangian

I =−
∫ (

φR+
ω

φ
gµν

φ,µφ,ν +V(φ)+Lmatter

)√
−g d4x (1)

is supplemented by a tenable scalar potentialV(φ). For the sake of simplicity, one may momentar-
ily switch off the matter LagrangianLmatter.

Associated with the above action are the gravitational field equations

φGµν =−φ;µν +gµνgαβ
φ;αβ +

ω

φ

(
1
2

gµνgαβ
φ,αφ,β −φ,µφ,ν

)
+

1
2

gµνV(φ) , (2)

whereGµν = Rµν − 1
2gµνR denotes the Einstein tensor. Substituting the Ricci scalar curvatureR

into the companion scalar field equation

ω

(
2
φ

φ;µν −
1

φ2gαβ
φ,αφ,β

)
= R+

∂V
∂φ

, (3)

one finally arrives at

gµν
φ;µν =

1
3+2ω

(
φ

∂V
∂φ

−2V

)
. (4)

Counter intuitively, the emerging Klein-Gordon equation is governed by the effective potential

Ve f f(φ) =
1

3+2ω

∫ (
φ

∂V
∂φ

−2V

)
dφ . (5)

It is the absolute minimization ofVe f f(φ), not of bareV(φ), which sets the VEV of the theory.
Such a minimization procedure is generically accompanied by a background cosmological con-

stantΛ≡−1
4
〈R〉=

1
4

∂V
∂φ

, such that the constant curvature vacuum solution is de-Sitter rather than

Minkowski. Up to an additive constant, a typical example is given by

V(φ) = 6GΩ2(φ −G−1)2 +2GΛφ
2 ⇐⇒ Ve f f(φ) = 2Ω2(φ −G−1)2 (6)

It is crucial to notice that (i) The GR-limit is associated withΩ→∞, and (ii) The effective potential
is Λ-independent.

To appreciate what is going on, here is a cosmological touch forΛ = 0 andω = 0. Within the
framework ofk = 0 FRW cosmology, substituting one field equation into the other leaves us with
a second order master equation for the Hubble constant

HḦ +3H2Ḣ− 1
2

Ḣ2 +2Ω2H2 = 0 . (7)

At early time (Ωt << 1), we find

H(t)' 1
2t

+
4Ωp

5
(Ωt)2 , Gφ(t)' p√

Ωt
+

4p2

5
Ωt . (8)
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Depending on the sign ofp, weak initial gravity may be attractive (p> 0) or repulsive (p< 0). It is
only for the special casep = 0 that theφ -expansion starts withGφ ' 4

5Ω2t2, which implies strong,
necessarily attractive, initial gravity. This special case is singled out on finiteness grounds when
noticing thatR' 12Ω2, rather thanR' p√

t
, ast → 0.

At later times (Ωt � 1), asymptotically approaching GR, our solution exhibits the particular
dust dominated behavior modulated by damped oscillations. In particular, the corresponding FRW
scale factora(t) can be integrated to establish our main result

a(t)∼ t2/3
(

1+
sin2Ωt

3Ωt

)
, (9)

whose consequences are depicted in the Figs.1,2

Figure 1: The Hubble constantH(t) evolution forΛ = 0. Time averaging over the ripples, justified for
largeΩt, resembles a General Relativistic matter dominated Universe.

Figure 2: Approaching General relativity: The reciprocal Newton constantG−1(t) evolution forΛ = 0 tells
us, quite non-trivially, that the matter dominated Universe is in fact General Relativistic.
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Two practical questions immediately arise: (i) How large is thisΩ frequency? and (ii) Can one
experimentally probe the rippled structure? Obviously, following the Nyquist-Shannon theorem,
if Ω−1 � τ, τ denoting the Hubble time, one would not be able to tell the actual FRW scalea(t)
from its coarse grained average. Note in passing that the incorporation of a positive cosmological
constantΛ would have a non-trivial effect on the cosmic ripples. Whereas dark matter ripples are

only t−1-suppressed, dark energy ripples are exp(−
√

3
4Λ

t)-suppressed.

Another topic of interest is the static radially symmetric line element

ds2 =−eν(r)dt2 +eλ (r)dr2 + r2dΩ2 . (10)

Based on the following gravitational and scalar field equations (keepΛ = 0, but allow arbitraryω)

φ
′′− 1

2
(ν ′+λ

′)
(

φ
′+

2
r

φ

)
+ω

φ ′2

φ
= 0 , (11)

φ
′′+

1
2
(ν ′−λ

′)
(

φ
′− 2

r
φ

)
− 2

r2(1−eλ )φ =
2eλ

3+2ω

{
φ

dV(φ)
dφ

+
(

ω− 1
2

)
V(φ)

}
, (12)

φ
′′+

(
ν ′−λ ′

2
+

2
r

)
φ
′ =

eλ

3+2ω

{
φ

dV(φ)
dφ

−2V(φ)
}

, (13)

there are three basic issues need to be addressed: (i) Deviations from Newton’s force law, (ii) The
fate of Schwarzschild black-hole away from GR, and (iii) Novel non-GR configurations.

Perturbing around the exact Schwarzschild solution, the leading order equation can be solved
analytically only for zero massM = 0; for M 6= 0, a power series inGM is in order. Another
constant of integrationε, the would be scalar charge, makes its appearance. Unfortunately, due to
length limitations, we are obliged to skip the derivation, but once the dust settles down, Newton’s
constant is supplemented by a Yukawa tail

φ(r)' 1
G

(
1+

ε

r
e−ξ Ωr

(
1+GMΩ

(
1

Ωr
−ξ

(
e2ξ

∫ ∞

2ξ

e−z

z
dz+ logκr

))))
, (14)

whereξ ≡ 2
√

3√
3+2ω

. By the same token, Newton’s gravitational potential reads now

Φ(r) =−GM
r
− ε

2r
e−ξ Ωr

(
1−GMΩ

(
2

Ωr
+ξ

(
e2ξ

∫ ∞

2ξ

e−z

z
dz+ logκr

)))
. (15)

What happens when nearing the would have been Schwarzschild horizon? At the stiff potential
limit (Ω → ∞), the exterior Schwarzschild solution (Newton constantG, massM) is recovered.
However, due to a level crossing phenomenon which occurs at the would have been horizon, it
now connects with a novel dark core. The latter is characterized by a varying Newton constant
accompanied by an exponentially small spatial volume element

Gin(r) =
r2

4GM2 , eλ (r)
in ∼ eν(r)

in ∼ lim
δ→0

( r
2GM

) 1
δ2

. (16)

Altogether, as depicted by Figs.3,4, we face a horizon phase transition, meaning a black star is
formed. Our theory further predicts light Einstein-style gravitational corpuscles (elementary par-
ticles?) which become point-like at the GR-limit. The universal size of such objects isO(Ω−1).
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Figure 3: Horizon phase transition: At the stiff scalar potential limitΩ → ∞, the recovered exterior
Schwarzschild solution (blue) connects with a novel interior core.

Figure 4: Radial dependence of the Newton ’constant’ (the GR case is depicted in blue).

Figure 5: Einstein corpuscles:M = 0 localized configurations of universal radiusO(Ω−1).
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