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1. Introduction

The interaction of cosmic neutrinos at ultra-high enerdi#dEv) with the cosmological back-
ground of relic (anti)neutrinos (B) has been proposed as a way of observing th®,Gand a
method to perform relic neutrino spectroscopy [1]. Proglideequate sensitivity and energy res-
olution of the detectors, the observation in the UHfix of absorption lines associated with the
resonant production of a Z bosony — Z — ff_) could indeed allow an indirect determination
of the absolute neutrino masses. The shape and depth ofdbssgption dips may also reflect
features of the distribution of UHEsources and of their emission spectrum [2]. Most of the work
in the literature describe the UHWECVB interactions assuming that relic neutrinos are at rest.
However, effects of thermal motion in the/8 (whose present temperaturexisl.69 x 1074 eV)
become relevant as soon as the momentum of the relic nesigts comparable to their mass, and
even before. To take this effect into account, we computaltminant (resonant) contribution to
the neutrino damping using the real-time formalism of fiutémperature field theory (FTFT), and
investigate the modifications in the UktEransmission probability due to thermal effects [5].

2. Damping of UHEv across the G/B

For an UHB with four-momentunk* = (&, ,K) and massn, travelling across the @B, the
equation of motion read¥ —m, — ) = 0, where the self-energy embodies the effects of the
medium. The corresponding dispersion relation is give#iby- &; (K) —iy(K)/2. In our casex
is determined from a FTFT one-loop calculation carried naerms of the (vacuum) Z boson prop-
agator and the thermal propagator of the relic neurinoslds$tene depends on the functiofigP)
and f;;(P) which describe the momentum distributions of neutrinogirf@ntrinos) in the thermal
bath. These functions take the simple relativistic Ferina®form, f, (P) = f;;(P) = 1/(e”/™ +1),
whereT, is the temperature of theuB and we have neglected the chemical potential.

The damping factoy governs the propagation of the UkMEacross the background of relic
neutrinos and is directly related to the imaginary part efsblf-energyz; [4]. In the approxima-
tion that the UHE are ultrarelativistic and we can neglect the backgrouneceffon their energy
(& (K) ~ K), the damping can be written as (see [5] for the detailedutation)

© dP

Wi(K) = _% Tr(kzi)|£;:K = 0 o2 P2 f7(P) ovu (P K). (2.1)

Form, < Mz,K and neglecting terms of ord€g /M2, we have

2 4K2(E, + P)2 — AM2K (E, + P) + M2
ov5(P.K) ZﬁeprzMz{H Mz ,n< (Ep+P)° —4MzK(Ep+P) + z>

2KEp 4KP 4AK2(Ep — P)2 — AM2K (Ep — P) + M3

M3 2K (Ep+ P) — M2 2K (E, — P) — M2
+-—~Z_ |arctan (Ep+P) —Mz _ arctan( 2XEe ) —Mz .(2.2)
My M5

whereE, = |/P?+n¥ is the energy of the relic neutrino. Taking the limit of eq2(2for P — 0,
one recovers the approximated cross-section used fomelitrinos at rest, with the Z peak at the
UHEV "bare" resonance enerdges = M2/(2m, ). However, this approximation breaks down for
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Figure 1: Top : cross-sectiom,;(P,K), in units of 10-31cn?, as given by eq. (2.2), as a function of the energy of the
incident neutrinoK, and of the relic neutrino momentui, From left to right, the panels correspond to a neutrino mass
10-1, 1072, and 102 eV. Bottom : Transmission probabilitr (Ko, zs) as a function of the UHE energy as detected
on Earth Ko, for a source located at redshifts= 1, 5, 10, 20 (from top to bottom in each panel) and for a neotniass

m, =101, 1072, 1073 eV (from left to right). The continued, black curves corresg to the full damping as given by
egs. (2.1) and (2.2), while the dotted (red) curves are f@aghproximation of relic neutrinos at rest.

smallm,: Fig. 1 (top line) shows how the resonance peak inthe- Z cross-section broadens and
shifts to lower UHE energies a® increases. The transmission probability for an UH&nitted
at a redshiftzs to be detected on Earth with an enellgyis obtained by integrating the damping
along the UHR path, taking into account that both the UblEnergy and the B temperature are

redshifted:
z

Pr(Ko,zs) = exp {— /ozsmyvv(l(o(l—l-z)) ,

whereH = Hg 1/0.3(1+ 2)3 + 0.7 is the Hubble factor. Fig. 1 (bottom line) shows thatrfgy/T, <
107 the absorption lines are also significantly broadened aifi@gho lower energies, and that the
effect increases with the distance travelled by the WHEhis complicates the extraction of, and

Zs from the start- and endpoint of the absorption dip, whichihapproximation of relic neutrinos
at rest, were respectively locatediat= Kres/(1+ Z5) andKo = Kres = M2/(2m,)).

(2.3)

3. Absorption lines in the UHEV flux

To investigate this effect in a realistic context, we appleir calculation to a flux of UHE

1 /® dz
=) A Pr(Ko,2) n(2) Jv(Ko),

G (3.1)

Fv(Ko)
assuming a distribution of sourcegz) = no(1+ 2)"6(z— Zmin) 8(Zmax— z) with a common in-
jection spectrumd, (K) = j, K~? 8(Kmax— K). The normalized flux then only depends on the dif-
ference of spectral indexes,— n, with typically a — n ~ 2 for astrophysical (bottom-up) sources
and a —n = 0 for top-down processes [2]. For these two cases, we comghte normalized,
all-flavour UHEV spectrum assuming some mass patterns compatible with thently favoured
three-neutrinos mass schemes [3]. Fig. 2 shows how thenmmatlening affects the superposition
of absorption lines and globally modifies the shape and sidarof the dip.
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Figure 2: UHEV flux in presence of dampingZ,, normalized to the corresponding flux in absence of interast
The top row is fora —n = 0 andzs = 10,20, and the bottom row is far —n =2 andz = 5,10. From left to right,
columns correspond to the following neutrino mass pattefb@ 3, 9x 1073, 5x 1072}, {1073, 5x 1072, 5x 1072},
{104, 9x 1073, 5% 1072}, {1074, 5x 1072, 5x 102} (all in eV). Colour code is as in fig. 1.

4. Conclusions

From the exploration of the parameter space currently a&ltbly astrophysical and cosmolog-
ical constraints, we see that thermal effects do affectrdnesmission properties of UHEacross
the Q/B even in the regime of non-relativistic relic neutrinosr Rtost neutrino mass patterns, the
extraction of the neutrino masses from the endpoint of ttsamdbion lines is complicated by the
broadening and merging of the dips, especially in normabhiéhical schemes (columns 1 and 3 in
fig. 2) and for top-down-like injection spectra. Some infatian on the source distribution could
still be provided by the onset energy and slope of the dip.
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