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1. Soft-gluon corrections

Physical cross sections can be calculated in perturbative QCD [1] as convolutions of pertur-
bative hard-scattering cross sections σ̂ with non-perturbative parton distribution functions φ . Near
threshold for the production of a specified system there is restricted phase space for real gluon
emission. This results in an incomplete cancellation of infrared divergences between real and vir-
tual graphs, which gives rise to large logarithms. If we define s4 = s+t1 +t2−∑m2, where the ti are
standard kinematical invariants and we sum over the particle masses, then s4 → 0 at threshold and
the soft and collinear corrections take the form of plus distributions Dl(s4) ≡ [(lnl(s4/M2))/s4]+
with M a relevant hard scale and l ≤ 2n − 1 for the n-th order corrections. The terms with
l = 2n− 1 are the leading logarithms (LL), those with l = 2n− 2 are the next-to-leading loga-
rithms (NLL), and so on [2, 3]. These corrections exponentiate in moment space. If we define
moments of the cross section by σ̂(N) =

∫ ∞
0 ds4 e−Ns4/M2 σ̂(s4) then the soft corrections become

Dl(s4) →
(−1)l+1

l+1 lnl+1 N + · · · We can formally resum these logarithms to all orders in αs by fac-
torizing the soft gluons from the hard scattering. To invert a resummed cross section back to
momentum space one needs to employ a prescription to deal with the Landau pole, and this creates
unavoidable ambiguities. However if one expands the resummed cross section at any fixed order,
no matter how high, then the inversion can be done without resorting to prescriptions [4].

At next-to-leading order (NLO) in αs we have D1(s4) (LL) and D0(s4) (NLL) terms. At next-
to-next-to-leading order (NNLO) we have D3(s4) (LL), D2(s4) (NLL), D1(s4) (NNLL), and D0(s4)

(NNNLL) terms. At next-to-next-to-next-to-leading order (NNNLO) we have D5(s4) (LL), D4(s4)

(NLL), D3(s4) (NNLL), D2(s4) (NNNLL), D1(s4) (NNNNLL), and D0(s4) (NNNNNLL) terms.

Threshold resummation has by now been applied to a large number of processes, most recently
to top quark pair hadroproduction [5], charged Higgs production [6], large-QT W [7] and Higgs [8]
production, and FCNC top production [9]. The numerical results typically show that the higher-
order corrections are sizable and they dramatically decrease the scale dependence.

2. NNNLO corrections

A unified expression for the resummed cross section for an arbitrary process is given by [4, 10]

σ̂ res(N) = exp

[

∑
i

E fi(Ni)+E fi
scale(µF ,µR)

]

exp

[

∑
j

E ′ f j(N j)

]

×Tr

{

H fi f j exp

[

∫

dµ ′

µ ′
Γ† fi f j

S

]

S fi f j exp

[

∫

dµ ′

µ ′
Γ fi f j

S

]}

, (2.1)

where µF is the factorization scale and µR is the renormalization scale. The exponents E fi and
E ′ f j resum contributions from incoming and outgoing partons, respectively, H are hard-scattering
matrices in color space, and S are soft matrices that describe noncollinear soft-gluon emission and
whose evolution is given in terms of the soft anomalous dimension matrices ΓS. See Refs. [4, 10]
for details.

2055/2

P
o
S
(
H
E
P
2
0
0
5
)
0
5
5



Soft-gluon corrections through NNNLO Nikolaos Kidonakis

The expansion of the resummed cross section to NLO provides us with a master formula for
the NLO soft-gluon corrections

σ̂ (1) = σ B αs(µ2
R)

π
{c3 D1(s4)+ c2 D0(s4)+ c1 δ (s4)}+

αdαs+1
s (µ2

R)

π
[Ac

D0(s4)+T c
1 δ (s4)] (2.2)

with c3 = ∑i 2Ci−∑ j C j, where for quarks Cq =CF = (N2
c −1)/(2Nc) and for gluons Cg =CA = Nc.

Also c2 = cµ
2 +T2, with cµ

2 =−∑iCi ln(µ2
F/M2) and T2 =−∑i[Ci+2Ci ln(−ti/M2)+Ci ln(M2/s)]−

∑ j[B
(1)
j +C j +C j ln(M2/s)], Ac = tr

(

H(0)Γ′(1)†
S S(0) +H(0)S(0)Γ′(1)

S

)

, and c1 = cµ
1 +T1, with cµ

1 =

∑i[Ci ln(−ti/M2)−γ (1)
i ] ln(µ2

F/M2)+dαs(β0/4) ln(µ2
R/M2), where B(1)

q = γ (1)
q = 3CF/4 and B(1)

g =

γ(1)
g = β0/4.

The master formula for the NNLO soft-gluon corrections is

σ̂ (2) = σ B α2
s (µ2

R)

π2

1
2

c2
3 D3(s4)

+σ B α2
s (µ2

R)

π2

{

3
2

c3 c2 −
β0

4
c3 +∑

j

C j
β0

8

}

D2(s4)+
αdαs+2

s (µ2
R)

π2

3
2

c3 Ac
D2(s4)

+σ B α2
s (µ2

R)

π2 C(2)
D1

D1(s4)+
αdαs+2

s (µ2
R)

π2

{(

2c2 −
β0

2

)

Ac + c3 T c
1 +Fc

}

D1(s4)

+σ B α2
s (µ2

R)

π2 C(2)
D0

D0(s4)+
αdαs+2

s (µ2
R)

π2

{[

c1 −ζ2 c3 +
β0

4
ln

(

µ2
R

M2

)

+
β0

4
ln

(

M2

s

)]

Ac

+

(

c2 −
β0

2

)

T c
1 +Fc ln

(

M2

s

)

+Gc
}

D0(s4) . (2.3)

Here C(2)
D1

= c3 c1 + c2
2 − ζ2 c2

3 − (β0/2)T2 +(β0/4)c3 ln(µ2
R/M2)+ c3 K/2−∑ j(β0/4)B(1)

j , Fc =

tr[H(0)(Γ(1)†
S )2S(0) + H(0)S(0)(Γ(1)

S )2 + 2H(0)Γ(1)†
S S(0)Γ(1)

S ], and C(2)
D0

, Gc can be found in [10] and
involve two-loop [11] corrections.

The master formula for the NNNLO soft-gluon corrections is

σ̂ (3) = σ B α3
s (µ2

R)

π3

1
8

c3
3 D5(s4)

+σ B α3
s (µ2

R)

π3

{

5
8

c2
3 c2 −

5
2

c3 X3

}

D4(s4)+
αdαs+3

s (µ2
R)

π3

5
8

c2
3 Ac

D4(s4)

+σ B α3
s (µ2

R)

π3

{

c3 c2
2 +

1
2

c2
3 c1 −ζ2 c3

3 +(β0 −4c2)X3 +2c3 X2 −∑
j

C j
β 2

0

48

}

D3(s4)

+
αdαs+3

s (µ2
R)

π3

{

1
2

c2
3 T c

1 +

[

2c3 c2 −
β0

2
c3 −4X3

]

Ac + c3 Fc
}

D3(s4)

+σ B α3
s (µ2

R)

π3

{

3
2

c3 c2 c1 +
1
2

c3
2 −3ζ2 c2

3 c2 +
5
2

ζ3 c3
3 +

(

−3c1 +
27
2

ζ2 c3

)

X3 +(3c2 −β0)X2

−
3
2

c3 X1 −∑
i

Ci
β1

8
+∑

j

C j
β0

16

[

β0 ln

(

µ2
R

M2

)

+2K

]

+∑
j

β 2
0

16
B′(1)

j +∑
j

3
32

C j β1

}

D2(s4)

+
αdαs+3

s (µ2
R)

π3

{(

3
2

c3 c2 −3X3

)

T c
1 +

3
2

[

c2 + c3 ln

(

M2

s

)]

Fc +
3
2

c3 Gc +
1
2

Kc
3
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+

[

3
2

c2
2 +

3
2

c3 c1 −3ζ2 c2
3 +3X2 +

β 2
0

4
−

3
4

β0

(

c2 −
c3

2
ln

(

µ2
R

M2

))

−
3β0

8
c3 ln

(

M2

s

)]

Ac
}

D2(s4)+ · · · (2.4)

where for brevity we have omitted the D1(s4) and D0(s4) terms (full expressions are provided
in [10]). Here X3 = (β0/12)c3 −∑ j C jβ0/24, X2 = −(β0/4)T2 +(β0/8)c3 ln(µ2

R/M2)+ c3K/4−

∑ j(β0/8)B(1)
j , and X1,Kc

3 can be found in [10].
The NNNLO soft-gluon corrections for top quark production at the Tevatron in the q q̄ channel

were calculated in [10]. The corrections are small but they decrease further the scale dependence
of the cross section, which is already small when the NNLO soft corrections (for which full results
for both partonic channels and in two different kinematics are available [5]) are taken into account.
When the NNNLO soft corrections are included, the cross section varies by only a few percent as
we vary the ratio µ/mt by two orders of magnitude. The theoretical prediction is in good agreement
with data from the Tevatron [12, 13].

For charged Higgs production via bg → tH− the NNNLO soft corrections were found to be
quite large [6, 10]; the soft corrections through NNNLO provide an increase of over 80% over the
leading order cross section at the LHC for a charged Higgs mass of 1000 GeV.
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