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A new crossing symmetric unitarization scheme conveniently applied to meson-meson and
meson-baryon scattering amplitudes is shortly proposed which can be not only used by theo-
reticians to unitarize arbitrary theoretical reaction amplitudes resulting from phenomenological
Lagrangeans for mesons and baryons, yet also by experimentalists to generate realistic unitary
fitting formulae for meson-meson and meson-baryon scattering observables sharing on one hand
all the features of the underlying theoretical amplitudes, on the other hand allowing direct com-
parison to these amplitudes. The new unitarization scheme has been inspired by the Dalitz and
Tuan (DT) representation [El], the basic ansatz of which is that *“... the phases caused by different
sources add ...” (using the words of B.S. Zou, D.V. Bugg, Phys. Rev. D 50 (1994) 591 [f]]).
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1. Unitarization and a new unitarization scheme inspired by Dalitz and Tuan

A quantitative description of particle scattering/production processes involving strong interac-
tions requires the complete non-perturbative scattering/production amplitude even close to thresh-
old. We shall call the procedure of estimating the non-perturbative part of a scattering/production
amplitude on the basis of a known perturbative or “tree-level” amplitude unitarization [[f]. A com-
prehensive list of existing unitarization methods has been provided and discussed in Ref. [[]]: the
Padé method [, [f], the Inverse Amplitude Method [H, fI. B, f], the N/D method, and K-matrix
unitarization method [P}, i, fil. Below we propose a to our best knowledge new crossing-symmetric
unitarization method avoids drawbacks' of above mentioned unitarization schemes and is inspired
by the observation of Dalitz and Tuan (DT) [[l]] that — using the words of B.S. Zou and D.V. Bugg

[B] — ““... the phases caused by different sources add ...". 2 Hence, we assume the S-matrix S

to be factorizable as a product of several partial S-matrices Sy, ..., Sy (n € N),i.e. S=95;5,...5,
(n € N). For simplicity we could assume unitarity of the partial S-matrices yielding the rela-
tion S; = 1+2iTj (j=1,...,n) between partial S-matrices and corresponding partial T-matrices
Ti, ..., Tn. Then the T-matrix could be expanded into partial T-matrices Ty, ..., Tp as follows:
n n n n
T:(Szil):% Dlsj_l = JZITJ- +% J|:|1 142iTj) — 1 Z (L)
——
“tree-level” “unitarization correction”

An instructive case occurs when all n partial T-matrices are equal to one partial T-matrix T =
T, =T, =... = T, corresponding to an unitary partial S-matrix 1+ 2iT. Then we have S =
(1+2iT)"and T =(S—1)/(2i) = ((1+2iT)"—1)/(2i) =nT + “unitarization correction”. Hence
the n-th power of a partial S-matrix 1+ 2i T yields a “tree-level” T-matrix N T being n times the
corresponding partial T-matrix T. 3 Let’s proceed to the case, in which we don’t know, whether a

I'Serious drawbacks of commonly used unitarization methods are lack of crossing symmetry (e.g. [E]), truncation
dependences [, problems with inclusion of chiral zeros [E], and difficulties to relate analytic expressions resulting from
such methods directly to results obtained by quantum-field theoretic calculations of scattering amplitudes on the basis of
Lagrangeans. Roy-equations [ admit fortunately crossing symmetry by imposing external conditions, unfortunately
they make strong assumptions about analyticity and have to be truncated in order to allow a numerical solution.

2Starting point for our consideration has been in analogy to DT the observation that the S-matrix for scalar isoscalar
TIIT — TI7E-scattering at energies below the KK-threshold and slightly above the mr-threshold is fitted on the basis of
experimental pole positions Mg go0) = (0.525 —10.265) GeV and My, (930) = (0.999 —i0.017) GeV to an astonishing

good approximation by a product of partial (Breit-Wigner) S-matrices S g00)(S) = (S — Mé%eoo)) /(s— Mg and

)
(600)
Sf0<980> (s)=(s M}‘OZ(QSO))/(S - M%0(980)) and a background phase 82(600) (Sthr) 8?0(980) (Sthr) = exp (2i (— 67.5°)) being
suitably chosen to make the cross section vanish exactly at the 7i7t-threshold Sy, =4 m?# (with myz= =0.13957018 GeV).
The fit S(s) = exp (2i (—67.5°)) Sg(600) (S) St,(980) (S) — lacking by construction desirable square-root behaviour at s =
Sthr — is compared to experimental phaseshift data in Figs. Iﬂ and E So(600)(8) and S (gg0) (S) represent manifestly s-
channel mr-scattering, while the background phase — 67.5° carries the reminder of t- and u-channel scattering processes.
31t is straight forward to analytically continue this result to arbitrary rational values of n. For n € R\INy we obtain:

1+2iT)"—1 _ 12 nn—=1)--(n=j+1) .
T = % =nT (“tree-level”) + % ; ( ) J‘( i+ (2i T)! (“unitarization corr”).  (1.2)
= ’
A simple non-trivial example for a non-natural value of n is n = —1, displaying a strong similarity to K-matrix unita-

rization, as S = (1 +2i T)~! and therefore T = (S—1)/(2i) = =T /(1 +2i T).
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partial T-matrix Tj (j € IN) corresponds to an unitary partial S-matrix S;j (j € N) or not. Inspired
by DT we would at least expect that the phase of Tj determines the phase of Sj according to Sj =
(Tj/T{)% = (14-2iIm([Tj] T_J-*’l)ai , while 0 is determined such that the “tree-level” contribution
to the T-matrix is given by Tj itself. To find o we expand (S; — 1)/(2i) in terms of Tj:

_ RN
Sj—1 mT] 121 (.. ImT) 2 k—1
—— = aj — — — 210, — 1——. 1.3
2i by +2|/Zz 0 Ty Dl a; (1.3)
—— i ~~
“tree-level” “unitarization correction”

Simple inspection yields ajIm[T;]/T; = Tj = aj = [Tj|*/Im[Tj]. * Hence we conclude: If the
“tree-level”” T-matrix is given by a sum Ty +...+ T, (n € IN) of arbitrary partial T-matrices T, ...,
Tn, then a DT-unitarized S-matrix S with a “tree-level”” term T, + ...+ T, can be denoted as:

S=5S...5 = (%)m[ﬂ] <%>Im[_2] (%)Im[_”] _
— exp [i (ILTIHZI] arg (TT—11> + IL;T.; arg (T—22> ot IE’[‘_; arg (I—:) )] . (14

2. Instructive examples

DT-unitarized s-channel Breit-Wigner resonance. Consider a partial T-matrix for one s-
channel Breit-Wigner resonance with constant complex mass M dressed by a real coupling constant
g € R. Le. we make the ansatz Ty = gIm[M?]/(s — M?) yielding Im[T;] = gIm?[M?]/|s — M??
and |T;|? = g>Im?[M?]/|s — M?|?. Then the unitarized S-matrix inspired by DT will be given by

s= (=M7)° Zexp M) The resulting DT-unitarized T-matrix is given by:
=W = p g arg S—M2 . € resu tlng unitarize matrix 1s given by:

_S—1_ ImMY 12 g(g-1)(9-2) - (g—L+1) [, ImM?] '
"= T 96w Tai i isowmy) o @Y
—_——
“tree-level” “unitarization correction”

In agreement with our previous discussion the unitarized T-matrix T reduces to the “tree-level”
T-matrix Ty for g € Ng. T seems to possess the same poles and zeros as T;.

DT-unitarized one-channel two-resonance L oM approach to rirr-scattering. The “tree-
level” U (3) x U(3) Linear Sigma Model (LoM) scattering amplitude for 77T — 17T scattering with
0(600) and fy(980) intermediate states is given by (f; ~ 92.42 MeV): 3

_ s—m? 5 [ cos? @ sin” ¢
Tnonoerﬁn‘(svtau) - prm(S) f—%ﬁ (1 - (s_mn) <S— M% + 5_ M%O PmT(S) -

(ST MR o M) (s—mp)? L, ML s
= S — Cos — sSin S).
Prn(s) ( 7 fzmMg " Fsomz T zmmz] M Bsome prn(S)
“The choice implies of course %}1 =T, (“tree-level”) + 71; ; (Zi;j)[ |'|£:1 (1 —(k=1) IF[-;—ZJ]> (“unit. corr.”).
= i

5@ € R is a nonstrange-strange scalar mixing angle defined by |07) = cos @ |nf) —sin @& |ss) and | fy) = sin ¢|nA) +
cos @ss$), while prr(s) = |BI/(8714/5) = 1/ (1 —4m%s—1)/(16T) ~ 8(s —4m2)/(167) is the TT7-phasespace.
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Figure 1: Fit of &)(+/s): contri- Figure 2: Fit of d)(1/s): contri- Figure3: Fitof &) (y/5): contribu-
bution of “background” (—67.5°) bution of “background” (—67.5°) tion of f;(980).
and 0(600) and fy(980). and 0(600).

The DT-unitarized crossing symmetric S-matrix is now obviously (P,—o 1 > are isospin projectors)
SnT[(;nT[(S,t,u) == eXp |:| \/ pnr[(s) X
% (3P0 (A(8) +A(1) +AU)) + R (A1) — A) + P2 (A1) +A() ) Vorn5) | 22)

(s—mp)?

. — M2 )2 s—M32
with A(s) = — 7 ImiMz] cos? @ arg (szmg ) — féslm“\z%o] sin® @ arg <S—Mf%(()) >
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