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By invoking the concept of twisted Poincaré symmetry of the algebra of functions on a Minkowski

space-time, we demonstrate that the noncommutative space-time with the commutation relations

[xµ ,xν ] = iθµν , whereθµν is aconstantreal antisymmetric matrix, can be interpreted in a Lorentz-

invariant way [1]. The implications of the twisted Poincaré symmetry on QFT on such a space-

time is briefly discussed. The presence of the twisted symmetry gives justification to all the

previous treatments within NC QFT using Lorentz invariant quantities and the representations of

the usual Poincaré symmetry.
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1. Introduction

The issue of the lack of Lorentz symmetry has been a challenge in quantum field theories on
noncommutative space-time, since the field theories defined on a space-time with the commutation
relation of the coordinate operators

[x̂µ , x̂ν ] = iθµν , (1.1)

whereθµν is aconstantantisymmetric matrix, are obviously not Lorentz-invariant, while preserv-
ing still translational invariance.

The most serious problem arises from the representation content of the subgroup of the Lorentz
group, under which NC QFT is symmetric. QFT on 4-dimensional NC space-time is invariant under
theSO(1,1)×SO(2) subgroup of the Lorentz group [2] (for several applications, see [3], [4], [5],
[6]). However, the representation content of theSO(1,1)×SO(2) subgroup is very different from
the representation content of the Lorentz group: bothSO(1,1) andSO(2) being abelian groups,
they have only one-dimensional unitary irreducible representations and thus no spinor, vector etc.
representations. In this respect, one encounters a contradiction with previous calculations (for a
review, see [7]), in which the representation content for the NC QFT was assumed to be the one of
the Poincaré group.

The usual pretext for disregarding this contradiction was by admitting that noncommutativity
should be relevant only at very short distances. Moreover, since the action of afreenoncommutative
field theory is the same as the action of the corresponding commutative theory, it was assumed that
the Hilbert space of states is the same in the two cases, therefore noncommutativity has been often
treated as a perturbation and only the corrections to first order inθ were computed. As a result, the
NC QFT was practically considered Lorentz invariant in zeroth order inθµν , with the first order
corrections coming only from the?-product.

The argument that a noncommutative free field theory is fully equivalent to its commutative
correspondent has been proven false in several calculations. For example, the Casimir effect - and
effect involving the energy offreefields - in the noncommutative case receivesθ corrections [8].
On the other hand, it was shown that the commutators of "local" observables of free noncommu-
tative fields are indeed different from the ones of the commutative theories and, moreover, they
exhibit the residualSO(1,1)×SO(2) symmetry [9].

The solution of this contradiction has been recently given, by realizing that QFT on NC space-
time can indeed be interpreted in a Lorentz-invariant way, in the sense that the representations of
the maximal symmetry algebra of NC QFT are the same as the ones of the usual QFT with Poincaré
invariance. This maximal symmetry is in effect a quantum symmetry, thetwist-deformed (Hopf)
Poincaréalgebra [1] and it enables us to discuss all the aspects of relativistic QFT, which are not
accessible within the residual symmetry approach [10]. For example, it justifies the attempt to
prove the spin-statistics theorem in [9] in Lagrangian formulation and in [5] within the axiomatic
approach.

2. Twist deformation of the Poincaré algebra

Usually the calculations in NC QFT are performed within the framework of the Weyl-Moyal
correspondence, in which the fields are defined on the commutative counterpart of the noncom-
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mutative space-time and the usual product of fields is replaced by the Moyal?-products, defined
as

φ ?ψ(x) = e
i
2θ µν ∂

∂xµ
∂

∂yν φ(x)ψ(y)|x=y . (2.1)

Consequently, the commutators of operators are replaced by Moyal brackets and the equivalent of
(1.1) is

[xµ ,xν ]? ≡ xµ ?xν −xν ?xµ = iθµν . (2.2)

The usual Poincaré algebraP with the generatorsMµν andPα has abelian subalgebra of in-
finitesimal translations. Using this subalgebra it is easy to construct a twist element of the quantum
group theory [11] (see also [12], [13]), which permits to deform the universal enveloping of the
Poincaré algebraU (P).

This twist elementF ∈ U (P)⊗U (P) does not touch the multiplication inU (P), i.e.
preserves the corresponding commutation relations amongMµν andPα ,

[Pµ ,Pν ] = 0 ,

[Mµν ,Mαβ ] = −i(ηµαMνβ −ηµβ Mνα −ηναMµβ +ηνβ Mµα) ,

[Mµν ,Pα ] = −i(ηµαPν −ηναPµ) , (2.3)

with the essential physical implication that the representations of the algebraU (P) are the same.
However, the action ofU (P) in the tensor product of representations is defined by the coproduct
given,in the standard case, by the symmetric map (primitive coproduct)

∆0 : U (P)→U (P)⊗U (P)
∆0(Y) = Y⊗1+1⊗Y , (2.4)

for all generatorsY ∈P. The twist elementF changes the coproduct ofU (P) [11]

∆0(Y) 7→ ∆t(Y) = F∆0(Y)F−1 . (2.5)

This similarity transformation is consistent with all the properties ofU (P) as a Hopf algebra if
F satisfies the following twist equation:

F (∆0⊗ id)F = F (id⊗∆0)F . (2.6)

Taking the twist element in the form of an abelian twist [14],

F = exp(
i
2

θ µνPµ ⊗Pν) , (2.7)

one can check that the twist equation (2.6) is valid.
Since the generators of translationsPα are commutative, their coproduct is not deformed (∆t =

∆0 is primitive)

∆t(Pα) = ∆0(Pα) = Pα ⊗1+1⊗Pα . (2.8)

However, the coproduct of the Lorentz algebra generators is changed (see also [15]):

∆t(Mµν) = e
i
2θ αβ Pα⊗Pβ ∆0(Mµν)e−

i
2θ αβ Pα⊗Pβ
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= Mµν ⊗1+1⊗Mµν − 1
2

θ αβ [(ηαµPν −ηανPµ)⊗Pβ

+ Pα ⊗ (ηβ µPν −ηβνPµ)] . (2.9)

It is known (cf. [12]) that having a representation of a Hopf algebraH in an associative
algebraA consistent with the coproduct∆ of H (a Leibniz rule)

h(a·b) = h1(a) ·h2(b) , ∆(h) = h1⊗h2 , (2.10)

the multiplication inA has to be changed after twistingH . The new product ofA consistent with
the twisted coproduct∆t is defined as follows: letF = ∑ f1⊗ f2, then

a?b = ∑( f̄1(a)) · ( f̄2(b)) , (2.11)

whereF̄ = ∑ f̄1⊗ f̄2 denotes the representation ofF−1 in A ⊗A , and the action of elements
f̄ ∈H on elementsa,b∈A is the same as without twisting.

Considering the commutative algebraA of fields, f (x), g(x),..., depending on the coordinates
xµ , µ = 0,1,2,3, in the Minkowski spaceM, In A we have the representation ofU (P) generated
by the standard representation of the Poincaré algebra:

Pµ f (x) = i∂µ f (x) , Mµν f (x) = i(xµ∂ν −xν∂µ) f (x) , (2.12)

The Poincaré algebra acts on the Minkowski spacexµ , µ = 0,1,2,3 with commutative multiplica-
tion:

m( f (x)⊗g(x)) := f (x)g(x) . (2.13)

When twistingU (P), one has to redefine the multiplication according to (2.11), while re-
taining the action of the generators of the Poincaré algebra on the coordinates as in (2.12):

mt( f (x)⊗g(x)) =: f (x)?g(x) = m◦e−
i
2θ αβ Pα⊗Pβ ( f (x)⊗g(x))

= m◦e
i
2θ αβ ∂α⊗∂β ( f (x)⊗g(x)) . (2.14)

Specifically, when one uses (2.14) to compute the commutator of coordinates, one obtains imme-
diatelly:

[xµ ,xν ]? = iθµν ,

which is indeed the Moyal bracket (2.2).

3. QFT on space-time with twisted Poincaré symmetry

Comparing (2.1) and (2.14), it is obvious that building up the noncommutative quantum field
theory through Weyl-Moyal correspondence is equivalent to the procedure of redefining the multi-
plication of functions, so that it is consistent with the twisted coproduct of the Poincaré generators
(2.8), (2.9). The QFT so obtained is invariant under the twisted Poincaré algebra. The benefit of
reconsidering NC QFT in the latter approach is that it makes transparent theinvarianceunder the
twist-deformed Poincaré algebra, while the first approach highlights theviolation of the Lorentz
group.

4156/4

P
o
S
(
H
E
P
2
0
0
5
)
1
5
6



On a Lorentz-Invariant Interpretation of Noncommutative Space-Time Anca Tureanu

The most important feature of the QFT with twist-deformed Poincaré symmetry, which de-
serves a special highlighting is that the representation content of the NC QFT is exactly the same
as for its commutative correspondent. It is easy to see that the action of the Pauli-Ljubanski opera-
tor,Wα =−1

2εαβγδ MβγPδ is not changed by the twist (due to the commutativity of the translation
generators) andP2 andW2 retain their role of Casimir operators. Consequently, the representations
of the twisted Poincaré algebra will be, just as in the commutative case, classified according to the
eigenvalues of these invariant operators,m2 andm2s(s+ 1), respectively. Besides justifying the
validity of the results obtained so far in NC QFT using the representations of the Poincaré algebra,
this aspect will cast a new light on other closely-related fundamental issues, such as the CPT and
the spin-statistics theorems in NC QFT [4, 5, 9].

4. Conclusions

Quantum field theory on NC space-time possesses symmetry under a twist-deformed Poincaré
algebra. The twisted Poincaré symmetry exists provided that: (i) we consider?-products among
functions instead of the usual one and (ii) we take the proper action of generators specified by the
twisted coproduct. As a byproduct with major physical implications, the representation content
of NC QFT, invariant under the twist-deformed Poincaré algebra, is identical to the one of the
corresponding commutative theory with usual Poincaré symmetry.
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