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1. Introduction

The issue of the lack of Lorentz symmetry has been a challenge in quantum field theories ¢
noncommutative space-time, since the field theories defined on a space-time with the commutat
relation of the coordinate operators

[Ru,Xv] =164y , (1.1)

wheref,,, is aconstantantisymmetric matrix, are obviously not Lorentz-invariant, while preserv-
ing still translational invariance.

The most serious problem arises from the representation content of the subgroup of the Lorel
group, under which NC QFT is symmetric. QFT on 4-dimensional NC space-time is invariant unde
theSQ(1,1) x SQ(2) subgroup of the Lorentz groug][(for several applications, se8][ [4], [5],

[6]). However, the representation content of 8@1,1) x SQ(2) subgroup is very different from

the representation content of the Lorentz group: #®@1,1) andSQ(2) being abelian groups,
they have only one-dimensional unitary irreducible representations and thus no spinor, vector e
representations. In this respect, one encounters a contradiction with previous calculations (fo
review, seeT]), in which the representation content for the NC QFT was assumed to be the one ¢
the Poincaré group.

The usual pretext for disregarding this contradiction was by admitting that noncommutativity
should be relevant only at very short distances. Moreover, since the actifreehancommutative
field theory is the same as the action of the corresponding commutative theory, it was assumed t
the Hilbert space of states is the same in the two cases, therefore noncommutativity has been of
treated as a perturbation and only the corrections to first ord&mniare computed. As a result, the
NC QFT was practically considered Lorentz invariant in zeroth ordél,in with the first order
corrections coming only from theproduct.

The argument that a noncommutative free field theory is fully equivalent to its commutative
correspondent has been proven false in several calculations. For example, the Casimir effect - ¢
effect involving the energy dieefields - in the noncommutative case recei@esorrections §].

On the other hand, it was shown that the commutators of "local" observables of free noncomm
tative fields are indeed different from the ones of the commutative theories and, moreover, th
exhibit the residuabQ(1,1) x SQ(2) symmetry P].

The solution of this contradiction has been recently given, by realizing that QFT on NC space
time can indeed be interpreted in a Lorentz-invariant way, in the sense that the representations
the maximal symmetry algebra of NC QFT are the same as the ones of the usual QFT with Poinc:
invariance. This maximal symmetry is in effect a quantum symmetrytviist-deformed (Hopf)
Poincaréalgebra ] and it enables us to discuss all the aspects of relativistic QFT, which are no
accessible within the residual symmetry approabli.[ For example, it justifies the attempt to
prove the spin-statistics theorem B jn Lagrangian formulation and irb] within the axiomatic
approach.

2. Twist deformation of the Poincaré algebra

Usually the calculations in NC QFT are performed within the framework of the Weyl-Moyal
correspondence, in which the fields are defined on the commutative counterpart of the nonco
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mutative space-time and the usual product of fields is replaced by the Mgyalducts, defined
as
iguv_o iv
PxP(x)=e2" 2" (X)P(Y)|x=y - (2.1)
Consequently, the commutators of operators are replaced by Moyal brackets and the equivalen
1.)is

The usual Poincare algebr# with the generatord,,, andP, has abelian subalgebra of in-
finitesimal translations. Using this subalgebra it is easy to construct a twist element of the quantt
group theory 11] (see also 12], [13]), which permits to deform the universal enveloping of the
Poincaré algebra/ (2).

This twist element¥ € % () @ % (£?) does not touch the multiplication i (%), i.e.
preserves the corresponding commutation relations arkpgandPy,,

[PLHPV} =0,
[Muv,Mgg] = =i(NuaMyg — NugMva — NvaMyg +NvgMya)
[Muwpa} = —i(NuaPv —NvaPy) , (2.3)

with the essential physical implication that the representations of the algepra) are the same.
However, the action of/ (%) in the tensor product of representations is defined by the coproduct
given,in the standard casdoy the symmetric map (primitive coproduct)

Do: U (P) — U(P)@U (P)
M(Y)=Y®R1+1RY, (2.4)

for all generatory € 2. The twist element# changes the coproduct &f (%) [11]
Do(Y) = D (Y) = FDo(Y)F L. (2.5)

This similarity transformation is consistent with all the propertiesf%?) as a Hopf algebra if
% satisfies the following twist equation:

F(Lowid)F = Z(id@0o).7 . (2.6)
Taking the twist element in the form of an abelian twiks]|
ﬁ‘:equée“"Pu(@P\,), (2.7)

one can check that the twist equati@ng) is valid.
Since the generators of translatid®sare commutative, their coproduct is not deformagd-
Ag is primitive)
Di(Py) =00(Py) =Pa ®1+1®P, . (2.8)

However, the coproduct of the Lorentz algebra generators is changed (seEjtso [

A (Muy) = elzQGBPD'@PBAO(Muv)e*izGaﬁPa@aPﬁ
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1
= Mp @1+10My, — é9"3[(:70,“% —NavPy) ®Ps
+ Pa @ (npuP —npvPu)] - (2.9)

It is known (cf. [L2]) that having a representation of a Hopf algeb#é in an associative
algebraz consistent with the coproduitof .77 (a Leibniz rule)

h(a-b) = hy(a) - ha(b), Ah)=h @hy, (2.10)

the multiplication ingZ has to be changed after twisticf. The new product of7 consistent with
the twisted coprodud; is defined as follows: letZ = 5 f1 ® f,, then

axb=" (fi(a)-(f2(b)) (2.12)

where.Z = > f_1® f_g denotes the representation.gf ! in &7 ® <, and the action of elements
f € 2 on elements, b € 7 is the same as without twisting.

Considering the commutative algehsaof fields, f (x), g(x),..., depending on the coordinates
Xy, 4 =0,1,2,3, in the Minkowski spac, In &7 we have the representation®f(2?) generated
by the standard representation of the Poincaré algebra:

Puf(X) =10, f(X), Myy f(X) =i(Xy0y —Xv0y) F(X), (2.12)

The Poincare algebra acts on the Minkowski spageu = 0,1,2, 3 with commutative multiplica-
tion:
m(f (x) @ g(x)) := F(X)g(x) - (2.13)

When twistingZ (&), one has to redefine the multiplication according2d. (), while re-
taining the action of the generators of the Poincaré algebra on the coordinate2.49in (

() @g(0) =t f(x)g(x) = moe ¥ %M (x) @ g(x))

= moe29"%9% (f(x) 2 g(x)) . (2.14)
Specifically, when one use2.04) to compute the commutator of coordinates, one obtains imme-

diatelly:
[XIJ’XV]* == |9uv 5

which is indeed the Moyal bracke2.@).

3. QFT on space-time with twisted Poincaré symmetry

Comparing 2.1) and @.14), it is obvious that building up the noncommutative quantum field
theory through Weyl-Moyal correspondence is equivalent to the procedure of redefining the muli
plication of functions, so that it is consistent with the twisted coproduct of the Poincaré generato
(2.9), (2.9. The QFT so obtained is invariant under the twisted Poincaré algebra. The benefit
reconsidering NC QFT in the latter approach is that it makes transpareinvtr@nceunder the
twist-deformed Poincaré algebra, while the first approach highlightsithation of the Lorentz

group.
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The most important feature of the QFT with twist-deformed Poincaré symmetry, which de
serves a special highlighting is that the representation content of the NC QFT is exactly the sar
as for its commutative correspondent. It is easy to see that the action of the Pauli-Ljubanski opel
tor, Wy = —3&4p,6MPYP? is not changed by the twist (due to the commutativity of the translation
generators) anB? andW? retain their role of Casimir operators. Consequently, the representations
of the twisted Poincaré algebra will be, just as in the commutative case, classified according to t
eigenvalues of these invariant operator8,andn?s(s+ 1), respectively. Besides justifying the
validity of the results obtained so far in NC QFT using the representations of the Poincaré algebi
this aspect will cast a new light on other closely-related fundamental issues, such as the CPT &
the spin-statistics theorems in NC QFH b, 9].

4. Conclusions

Quantum field theory on NC space-time possesses symmetry under a twist-deformed Poinc:
algebra. The twisted Poincaré symmetry exists provided that: (i) we consjg@ducts among
functions instead of the usual one and (ii) we take the proper action of generators specified by t
twisted coproduct. As a byproduct with major physical implications, the representation conter
of NC QFT, invariant under the twist-deformed Poincaré algebra, is identical to the one of th
corresponding commutative theory with usual Poincaré symmetry.
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