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In gauge theory on noncommutative spacetime with constant commutator, the infinities of com-

mutative gauge theory persist and new infinities (the famous IR/UV-mixing) show up. To deal

with these, a consistent way to regularize noncommutative QFT is needed. For the regularization

we will use a matrix model whose ground state is the product of two fuzzy spheeres, the fluctua-

tions around this ground state producing the gauge theory. This gauge theory is completely well

defined and finite. In a double scaling limit we will blow up the fuzzy spheres at their north poles,

mapping the gauge theory on the spheres to the gauge theory on noncommutative R
4, and thereby

providing it with the desired reularization. Further we were able to match certain sectors of the

instanton solutions of the regularized theory with known fluxon-solutions on noncommuative R
4.

The talk is based on joint work with Frank Meyer and Harold Steinacker [1].
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One of the motivations for introducing noncommutative structures in physics was to get a
better control of the infinities in quantum field theory. At least for the canonical case of constant
commutator between the coordinates, this hope was not fulfilled. The infinities of the commutative
theory persist, and even new phenomena like the IR/UV-mixing were found. To handle these
problems, a consistent way to regularize noncommutative QFTs is needed. In this talk we will
present such a regularization of noncommutative gauge theory on R

4
θ .

In the canonical case, the noncommutative space R
4
θ is generated by coordinates with commu-

tation relations
[xi,x j] = iθi j with θi j ∈ R. (1)

By suitable rotations and complexification, this can always be brought to the form of two Heisen-
berg algebras

[x+
L ,x−L ] = θ , [x+

R ,x−R ] = θ and [x±L ,x±R ] = 0, (2)

which can now be represented on the usual Fock space . Derivatives are internal operations on
this space, i.e. ∂i =̂ − i

θ [xi, · ]. Gauge theory can be formulated as a matrix model with infinte-
dimensional matrices X and an action

S = −
(2π)2

2g2θ 2 tr ([Xi,X j]− iθi j)
2. (3)

The ground state of such a theory obviously is R
4
θ , and fluctuations A i around this ground state will

produce a gauge theory with covariant coordinates Xi = xi +Ai transforming as

Xi → UXiU
† (4)

Ai → U [xi,U
†]+UAiU

† (5)

under unitary gauge transformations U . The field strength is defined as

iFi j = [Xi,X j] − iθi j = [xi,A j]− [x j,Ai]+ [Ai,A j] (6)

It is well known that this theory is not free of infinities, but there is also another problem linked
to the infinite-dimensional representation of the space: it contains sectors for gauge groups U(N)

of arbitrary rank. If xi is a ground state of (3), then xi ⊗ 1N×N is a ground state as well! And the
related covariant coordinates Xi = xi ⊗1N×N +Ai,aT a with T a the generators of u(N) will therefore
produce a U(N) gauge theory. We will see that this problem is absent in our regularized theory.

For the regularization we will follow the ideas of [2], using a spacetime generated by two sets
of fuzzy spheres. Such a fuzzy sphere is a M-dimensional (and therfore finite) representation of
su(2), with generators fulfilling

[λi,λ j] = iεi jkλk and λ 2
1 +λ 2

2 +λ 2
3 =

M2 −1
4

. (7)

The coordinates are linked to the generators by xi = 2R√
M2−1

λ and the tangential derivatives are
again inner, i.e. Ji = [λi, · ]. The four-dimensional space is then generated by two sets λiL and λiR,
which are now M2-dimensional matrices. The gauge theory can be introduced in much the same
way as in the canonical case by setting a matrix action

S =
8π2

M2 tr((i[BiL/R,B jL/R]+ εi jkBkL/R)2 − [BiL,B jR]2 +V (B)), (8)
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where the potential V (B) = 2(BiLBiL − M2−1
4 )2 + 2(BiRBiR − M2−1

4 )2 stabilizes the radii of the
spheres. The ground states are obviously λiL = λi ⊗ 1 and λiR = 1⊗ λi, and the covariant coor-
dinates BiL/R = λiL/R +AiL/R again transform as

Bµ → UBµU (9)

Aµ → U [λµ ,U ]+UAµU (10)

producing a gauge theory with field strength

FiL jL = [λiL,A jL]− [λ jL,AiL]+ [AiL,A jL]− iεi jkAkL. (11)

Quantization can be performed by doing a path integral over the matrix entries as

Z[J] =

∫

dBµe−S[Bµ ]+tr Bµ Jµ . (12)

Note that everything is finite because the trace is over a finite dimensional space. Also, the rank of
the gauge group is fixed (in our case to N = 1), because we are using M-dimensional matrices. To
construct a U(N) gauge theory, we have to use NM2-dimensional matrices, the potential V singling
out λµ ⊗1N×N as the ground state.

For the coordinates, the limit to R
4
θ can be done by letting M go to infinity and at the same

time blowing up the spheres around the north poles by setting R2 = Mθ/2. Then the coordinates
fulfil

[x1,x2] = i
2R
N

√

R2 − x2
1 − x2

2 = iθ +O(1/N). (13)

The same can be done for the covariant coordinates, setting

√

2θ
M

B1,2/,L → X1,2 and

√

2θ
M

B1,2/,R → X3,4 (14)

and thereby mapping the gauge theory on the fuzzy spheres to the one on R
4
θ . To confirm this also

in the nonperturbative regime, we constructed a part of the known instanton solutions on R
4
θ from

instantons on the fuzzy spheres. Surprisingly, the regularization works as a superselection rule on
the instanton charge. On R

4
θ , instantons with charge k can simply be written as

Xµ =

(

diag(c1,µ , ...,ck,µ ) 0
0 xµ

)

. (15)

We can mimick this construction on the spheres by setting

Bµ =

(

diag(d1,µ , ...,dk,µ ) 0
0 λµ

)

, (16)

but here the dimension of the Bµ is fixed to M2. Of course we can use representations λµ of
dimension M′ = (M − l)(M −m), but this means that the only finite instantons allowed are those
with l = −m and instanton charge k = l2.
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