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We review here the status of the Unitarity Triangle beyond the Standard Model. Within the Stan-

dard Model (SM), all flavour and CP violating quark weak interactions are governed by the CKM

matrix, which can be parameterized in terms of three angles and one phase, or, more conveniently,

in terms of the parameters λ , A, ρ̄ and η̄ . This implies very strong correlations among flavour

and CP violating observables within the SM. The Unitarity Triangle (UT) is a very useful tool

to analyze these correlations. With the recent data on B decays, the UT fit has become strongly

overconstrained, thus it is now possible to test the CKM mechanism within the SM and to derive

constraints on New Physics (NP). In this talk, we will review the latter aspect, while the first is

contained in ref. [1]. More details on the procedure and on the results can be found in ref. [2]. We

analyze the determination of the unitarity triangle and the model-independent constraints on new

physics that can be derived from this analysis. We find stringent bounds on new contributions to

K − K̄ and Bd − B̄d mixing, pointing either to models of minimal flavour violation or to models

with new sources of flavour and CP violation in b → s transitions. We also discuss the status of

the universal unitarity triangle in minimal flavour violation. Finally, we perform a combined fit of

the Unitarity Triangle and of new physics contributions in Minimal Flavour Violation, reaching a

sensitivity to a new physics scale of about 5 TeV. More details on these analyses and on the results

can be found in ref. [3].
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1. Constraints on New Physics from the Unitarity Triangle

Thanks to the measurements of the UT angles recently performed at B factories, the UT fit is
at present time overconstrained. Therefore, it has become possible to add NP contributions to all
quantities entering the UT analysis and to perform a combined fit of both NP and SM parameters. In
general, NP models introduce a large number of new parameters whose specific list and the actual
values can only be determined within a given model. Nevertheless, each of the meson-antimeson
mixing processes is described by a single amplitude and can be parameterized, without loss of
generality, in terms of two parameters, which quantify the difference between the full amplitude and
the SM one. Thus, in the case of B0

q− B̄0
q mixing we define CBq e2iφBq = 〈B0

q|H
full
eff |B̄

0
q〉/〈B

0
q|H

SM
eff |B̄

0
q〉

with q = d,s, and where HSM
eff includes only the SM box diagrams, while H full

eff includes also the NP
contributions. In K0 − K̄0 mixing, we find it convenient to introduce a single parameter relating
the imaginary part of the amplitude to the SM one: CεK = Im[〈K0|Hfull

eff |K̄
0〉]/Im[〈K0|HSM

eff |K̄
0〉].

Therefore, all NP effects in ∆F = 2 transitions are parameterized in terms of three real quantities,
CBd , φBd and CεK . NP in the Bs sector is not considered, due to the lack of experimental information.
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Figure 1: From top to bottom and from left to right, p.d.f.’s for CBd , φBd , φBd vs.CBd , φBd vs.γ , CεK , the
resulting selected region on the ρ̄ − η̄ plane obtained from the NP analysis, P.d.f. in the (ANP/ASM) vs. φNP

plane for NP in the |∆B| = 2 sector, and the selected region on ρ̄-η̄ plane obtained from the determination
of the UUT analysis [3].

We also include in the fit NP effects in ∆B = 1 transitions that can also affect some of the mea-
surements entering the UT analysis, in particular the measurements of α and ASL[3]. The results
obtained in a global fit for the NP parameters are shown in Fig. 1, together with the corresponding
regions in the ρ̄–η̄ plane. Writing CBd e2iφBd = (ASMe2iβ +ANPe2i(β+φNP))/(ASMe2iβ ) and given the
p.d.f. for CBd and φBd , we can derive the p.d.f. in the (ANP/ASM) vs. φNP plane as seen in Fig. 1.
We see that the NP contribution can be substantial if its phase is close to the SM phase, while for
arbitrary phases its magnitude has to be much smaller than the SM one.1 Assuming that the small

1Notice that, with the latest data, the SM (φBd = 0) is disfavoured at 68% probability due to a slight disagreement
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but non-vanishing value for φBd we obtained is just due to a statistical fluctuation, the result of our
analysis points either towards models with no new source of flavour and CP violation beyond the
ones present in the SM (Minimal Flavour Violation, MFV [5, 6]), or towards models in which new
sources of flavour and CP violation are only present in b → s transitions. In the rest of this talk we
will concentrate on the former possibility.

2. Minimal Flavour Violation models

We now specialize to the case of MFV. Making the basic assumption that the only source of
flavour and CP violation is in the Yukawa couplings[4], it can be shown that the phase of |∆B| = 2
amplitudes is unaffected by NP, and so is the ratio ∆ms/∆md . This allows the determination of
the Universal Unitarity Triangle independent on NP effects in the context of MFV models: it is
based on |Vub/Vcb|, γ , ACP(B → J/ΨK(∗)), β from B → D0h0, α , and ∆ms/∆md[6]. In the bottom-
right plot in Fig. 1 we show the allowed region in the ρ̄ − η̄ plane for the UUT analysis. The
corresponding values and ranges are reported in Tab. 1.

UUT analysis Minimal Flavour Violation analysis

low/moderate tanβ large tanβ
68% 95% 68% 95% 68% 95%

ρ̄ 0.259 ± 0.068 [0.107, 0.376] 0.216 ± 0.058 [0.109, 0.361] 0.231± 0.067 [0.112, 0.375]

η̄ 0.320 ± 0.042 [0.241, 0.399] 0.351 ± 0.032 [0.265, 0.406] 0.347±0.036 [0.254, 0.404]

sin2β 0.728 ± 0.031 [0.668, 0.778] 0.733 ± 0.027 [0.679, 0.781] 0.731± 0.027 [0.673, 0.781]

α[◦] 105 ± 11 [81, 124] 98.6 ± 9.5 [81.6, 121.7] 101± 11 [82, 124]

γ [◦] 51 ± 10 [33, 75] 57.6 ± 9.1 [35.7, 79.1] 55± 11 [34, 74]

(2β + γ)[◦] 98 ± 12 [77, 123] 104 ± 10 [80, 122] 102± 12 [77, 121]

∆ms [ps−1] 20.6 ± 5.6 [10.6, 32.6] 19.5 ± 2.6 [15.0, 31.7] 22.6 ± 5.4 [15.5, 35.1]

Table 1: Results for UT parameters from both the UUT and the MFV generalized analyses [3].

If we now consider MFV models with one Higgs doublet or low/moderate tanβ , all NP effects
in |∆F|= 2 transitions are due to the effective Hamiltonian2 (a/2Λ2)(Q̄LλFCγµQL)

2 with (λFC)i j =

Y 2
t V ∗

tiVt j for i 6= j and zero otherwise, Yt the top quark Yukawa coupling, Λ the scale of NP and a
an unknown (but real) Wilson coefficient. The value of a can range from order one for strongly
interacting extensions of the SM to much smaller values for weakly interacting theories and/or
symmetry suppressions analogous to the GIM mechanism in the SM. To project this onto the SM
|∆F| = 2 effective Hamiltonian, only a modification of the top quark contribution to box diagrams
has to be applied. Normalizing the NP Wilson coefficient to the SM effective electroweak scale
Λ0 = Yt sin2 θW MW /α ≈ 2.4 TeV, we obtain S0(xt) → S0(xt)+δS0 and δS0 = 4a(Λ0/Λ)2. We can
therefore determine simultaneously the shape of the UT and δS0 from the standard UT analysis.
Then, choosing as reference values a = ±1, we can translate the constraints on δS0 into a lower
bound on Λ. At 95% probability we obtain (see Fig. 2): Λ > 3.6(5.1) TeV for δS0 > 0 (δS0 < 0).

between sin2β and |Vub/Vcb|. This requires ANP 6= 0 and φNP 6= 0. For the same reason, φNP > 90◦ at 68% probability
and the plot is not symmetric around φNP = 90◦.

2Here and in the rest of this section we follow the notation of Ref. [4].
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Also in this case, we can obtain predictions for UT parameters, together with a constraint on NP
contributions (see Tab. 1).

In the case of large tanβ , the situation changes since the bottom Yukawa coupling is not negli-
gible anymore, and it can distinguish transitions involving b quarks from those involving only light
quarks. This spoils the correlation of |∆B| = 2 with |∆S| = 2 amplitudes, so that two uncorrelated
parameters δSB

0 and δSK
0 are required in this case, to take into account NP contributions to Bd,s–

B̄d,s and K–K̄ mixing. In a global fit, made by using all the available inputs, ∆md and ∆md/∆ms

determine the value of δSB
0 , εK fixes δSK

0 , while ρ̄ and η̄ are given by the combination of all the
other constraints.

Performing this analysis, we bound the UT parameters as given in Tab. 1 and we limit the NP
scale to be, from Bd,s − B̄d,s mixing Λ > 2.6(4.9) TeV for δSB

0 > 0 (δSB
0 < 0) at 95% probability,

and from K − K̄ mixing Λ > 3.2(4.9) TeV for δSK
0 > 0 (δSK

0 < 0) at 95% probability. The output
distributions for δSB

0 and δSK
0 are given in Fig. 2.
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Figure 2: From left to right: P.d.f. of δS0, δSK
0 vs δSB

0 , δSB
0 and δSK

0 . See the text for details.

It is instructive to observe the two-dimensional plot of δSB
0 vs. δSK

0 in Fig. 2: within models
with only one Higgs doublet or with small tanβ , the two δ ’s are bound to lie on the line δSB

0 = δSK
0 .

The correlation coefficient R provides a measure of this relation. We find R = 0.52 giving no
compelling indication on the value of tanβ .
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