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to the squared mass of the charged or pseudoscalar Higgs, respectively.
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In this talk we will review recent results [1, 2] on symmetry breaking in two Higgs doublet
models (2HDM) [3]. Namely, the possibility that minima that break different symmetries can
appear simultaneously in the potential, and tunneling between them might occur.In ref. [1] we
worked in 2HDM without explicit CP breaking and showed that if there is, attree level, a mini-
mum that preserves theU(1)em and CP symmetries, that minimum is the global one. Therefore, the
stability of this minimum is guaranteed and tunneling to a deeper one that breaks charge conserva-
tion or CP becomes impossible. In ref. [2] we extended this analysis to the mostgeneral 2HDM
and proved that, once a charge-preserving minimum exists, any charge breaking (CB) stationary
point that might exist lies above the minimum. Charge conservation is thus assured.

There are many ways of writing the 2HDM tree-level potential, for this talk we will use the
one introduced in ref. [4]. With two scalar Higgs doublets in the theory,Φ1 andΦ2, both having
hyperchargesY = 1 1,

Φ1 =

(

ϕ1 + iϕ2

ϕ5 + iϕ7

)

, Φ2 =

(

ϕ3 + iϕ4

ϕ6 + iϕ8

)

, (1)

there are fourSU(2)W ×U(1)Y invariants one can construct with these fields, namely

x1 ≡ |Φ1|
2 = ϕ2

1 +ϕ2
2 +ϕ2

5 +ϕ2
7

x2 ≡ |Φ2|
2 = ϕ2

3 +ϕ2
4 +ϕ2

6 +ϕ2
8

x3 ≡ Re(Φ†
1Φ2) = ϕ1ϕ3 +ϕ2ϕ4 +ϕ5ϕ6 +ϕ7ϕ8

x4 ≡ Im(Φ†
1Φ2) = ϕ1ϕ4−ϕ2ϕ3 +ϕ5ϕ8−ϕ6ϕ7 . (2)

Notice that under a particular CP transformation in this basis (Φ1 → Φ∗
1 , Φ2 → Φ∗

2) the invariants
x1, x2 andx3 remain the same butx4 changes sign. The most general tree-level potential is thus
composed of all the terms linear and quadratic in thex’s, i.e.,

V = a1 x1 + a2 x2 + a3x3 + a4x4 + b11x2
1 + b22x2

2 + b33x2
3 + b44x2

4+

b12x1x2 + b13x1x3 +b14x1x4 + b23x2x3 + b24x2x4 + b34x3x4 . (3)

Theai parameters have dimensions of mass squared and thebi j parameters are dimensionless. The
potential thus written depends on 14 real parameters but, with a particular choice of basis, one can
reduce this number to 11 independent parameters (see, for instance, [5]). The linear terms inx4 are
the ones that explicitly break CP, and if we eliminate them we are left with the 10 parameter CP
preserving potential that was used in ref. [1] (with a judicious choice of basis [5] the number of
independent real parameters of this potential may be reduced to 9).

It is a well known fact [3] that the 2HDM potential can only have three types of minima. One
of them is a charge breaking minimum where three of the fields, at least one of them carrying
electrical charge, have non-vanishing vacuum expectation values (vevs). For instance, the fields
ϕ5, ϕ6 andϕ3. In the second possible type of minimum only neutral fields have vevs and there
are two possibilities. In the first only two fields have vevs (ϕ5 andϕ6, for instance), and we call
this the first “normal" minimum,N1. In the second case there are three vevs, for the fieldsϕ5, ϕ6

1The numbering of the real scalarϕ fields is chosen for convenience of writing the mass matrices for the scalar
particles.
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andϕ7, for example. We call this case theN2 minimum. Notice that when the model is reduced to
the potential that explicitly preserves CP, theN2 minimum spontaneously breaks CP. For this more
general case, however, there isa priori no physical distinction between the two “normal" minima,
both of them preserving charge conservation.

In references [1] and [2] we developed a method to compute the value of the tree-level potential
at each of these stationary points, and compare their value. We refer the readers to those publica-
tions for details of the calculations, and proceed to present the results andtheir consequences. For
theN1 minimum, the vevs will beϕ5 = v1 andϕ6 = v2; for CB, we will haveϕ5 = v′1, ϕ6 = v′2 and
ϕ3 = α (this last vev is the charged one that breaks charge conservation); for N2, ϕ5 = v′′1, ϕ6 = v′′2
andϕ7 = δ (in the case of the CP preserving potential, this last vev is the one that spontaneously
breaks CP). The difference between the values of the potential at a CB and anN1 stationary points
is given by

VCB − VN1 =
1
2

Y T V ′ =
M2

H±

2v2

[

(v′1 v2 − v′2 v1)
2 + α2 v2

1

]

, (4)

whereM2
H± is the value of the squared charged scalar mass atN1. Then, ifN1 is a minimum, we will

necessarily haveM2
H± > 0 and, given that the quantity in square brackets above is always positive,

we conclude thatVCB − VN1 > 0. Then, the CB stationary point is clearly above theN1 minimum.
Furthermore, it is possible to show that under these circumstances the matrix of CB squared scalar
masses is neither positive nor negative definite. As a result, we reach the conclusion the the CB
stationary point is a saddle point, and lies above theN1 minimum.

Results altogether identical are obtained if one compares theN2 and CB potentials. From [2]
we see that

VCB − VN2 =

(

M2
H±

2v2

)

N2

[

(v′1 v′′2 − v′2 v′′1)
2 + α2(v′′1

2
+ δ 2) + δ 2 v′22

]

, (5)

where now
(

M2
H±

)

N2
is the squared charged scalar mass of theN2 stationary point, and(v2)N2 =

v′′21 + v′′22 + δ 2. Again, we reach the conclusion that, ifN2 is a minimum, thenVCB − VN2 > 0,
and the CB stationary point lies above the normal minimum, Again, it is possible to demonstrate
that the CB stationary point is a saddle point. The conclusion to take from this analysis is that, if
a minimum that preserves electric charge conservation exists, it is necessarily deeper than any CB
stationary point that might exist in the model. Further, that stationary point is necessarily a saddle
point. There is therefore no possibility whatsoever of tunneling from a charge-preserving minimum
to a deeper one where charge is broken, and the masslessness of the photon is thus assured.

What about a comparison between the values of the potential atN1 andN2 stationary points?
Unfortunately we cannot reach any definite conclusion about which of these possible minima is
deeper. Following a chain of thought altogether identical to the previous cases, one obtains

VN2 − VN1 =
1
2

[

(

M2
H±

v2

)

N1

−

(

M2
H±

v2

)

N2

]

[

(v′′1 v2 − v′′2 v1)
2 + δ 2 v2

2

]

. (6)

Depending on which stationary point has a larger value for the squared charged mass, then, either
N1 or N2 might be deeper. This seems to depend on the particular values of the parameters of the
model, both casesa priori possible. A very interesting thing happens, though, when we restrict
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ourselves to the case of the CP preserving potential. In that case theN1 minimum preserves both
electric charge conservationand CP, and theN2 stationary point spontaneously breaks CP. Calling
VN1 = VN andVN2 = VCP, and investigating the mass matrices of the 2HDM model (for instance,
[1]) we obtain a remarkable result,

VCP − VN =
M2

A

2v2

[

(v′′1 v2 − v′′2 v1)
2 + δ 2 v2

2

]

, (7)

whereM2
A is, as usual, the squared pseudoscalar mass at the normal (i.e., charge and CP preserving)

minimum. The right-hand side of this equation is thus positive and we have, just as in the CB case,
VCP − VN > 0. The CP stationary point is thereforeabove the normal minimum, but in this case
it is not obvious whether it is also a saddle point. Thus no tunneling to a deeper minimum may
occur once the potential is at a vacuum that respects both CP and chargeconservation. The tree
level vacuum, we have therefore shown, is perfectly stable.

An intriguing aspect of these results is the following: if one observes equations (4) and (5),
one sees that the difference in the depth of the potential between the normalminimum and the CB
stationary point is “controlled" by the charged Higgs squared mass. On theother hand, equation (7)
shows that the difference in the value of the potential between the CP and thenormal stationary
points is proportional to the pseudoscalar squared mass. That is, the depth of the potential at a
stationary point that breaks a given symmetry, relative to the normal minimum, depends, in a very
straightforward manner, on the mass of the scalar particle directly linked with that symmetry. The
absence of charge breaking when normal minima exist seems to be related to the non-existence,
in the potential, of cubic terms in the fields. In fact, analysing the Zee model [6]scalar potential
- this model consists of the 2HDM plus a chargedSU(2) singlet scalar -, where such terms are
present, CB minima deeper than the normal ones are discovered [7]. This isnot surprising, since
charge - and colour - breaking is known to occur in supersymmetric theories [8], for which the
scalar potential has, once again, cubic terms in the fields.
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