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The processes e+e− → tt̄/bb̄ + Higgs allow to measure the Yukawa couplings between Higgs

bosons and heavy quarks in supersymmetric theories. The complete set of next-to-leading order

SUSY–QCD corrections to the cross sections of these processes have been determined in the

minimal supersymmetric extension of the Standard Model. They turn out to be O(10−20%) and

thus important for future linear e+e− colliders
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1. Calculation of NLO SUSY-QCD Corrections

The leading order (LO) Higgs radiation off heavy quarks splits into three different classes of
contributions: (i) Higgs radiation off the heavy (anti)quark, (ii) Higgs radiation off the Z boson
(only scalar Higgs radiation) and (iii) Z boson splitting into scalar-pseudoscalar Higgs pairs with
one of them dissociating into a heavy QQ̄ pair [1]. Depending on the masses of the corresponding
particles resonant contributions will arise, which require the inclusion of finite decay widths of the
Z and Higgs bosons in the corresponding propagators. We have used conventional Breit-Wigner
propagators for the resonant Z → bb̄ and φ 0 → tt̄/bb̄ decays as in previous analyses [2].

We include the QCD corrections of Ref. [2] with the QCD coupling αs evaluated at NLO with
5 active flavours at the renormalisation scale µR =

√
s with s being the e+e− c.m. energy squared.

The bottom Yukawa couplings are computed at the scale of the corresponding Higgs-momentum
flow. This choice absorbs large logarithmic contributions of the pure QCD corrections [2].

The NLO SUSY-QCD corrections arise from virtual gluino and stop/sbottom exchange (for
further details see Ref. [1]). They consist of self-energy, vertex and box contributions, which are
calculated within dimensional regularisation in the standard way. Since all virtual particles are
massive, no infrared nor collinear singularities arise. The ultraviolet divergences are removed by
the renormalisation of the quark masses and Yukawa couplings. The latter is connected to the quark
mass renormalisation. In the case of t t̄+Higgs production the top mass has been renormalised on-
shell in the propagators as well as in the Yukawa couplings. The same prescription has also been
chosen for the bottom mass, since the virtual gluino and sbottom masses are too large to develop
large logarithmic contributions. Thus the renormalisation of the bottom quark mass is given by

m0
b = mb(µ2)

[

1+
(

−
αs

π
Γ(ε)(4π)ε

)

︸ ︷︷ ︸

δQCD

+

(
Σ̃(mb)

mb(µ2)

)

︸ ︷︷ ︸

δSQCD

]

where m0
b denotes the bare bottom mass, mb(µ2) the MS mass at the scale µ and δ(S)QCD the

corresponding (SUSY-)QCDcounter terms. The SUSY-QCD contribution to the bottom quark self-
energy is displayed by Σ̃(mb) with on-shell momentum. This renormalisation prescription ensures
that the gluino and sbottom contributions are decoupled from the running of the bottom Yukawa
couplings. Thus we are left with the pure MS Yukawa couplings of QCD.

The final result can be cast into the form

σ(e+e− → QQ̄φ 0) = σLO(e+e− → QQ̄φ 0)

{

1+[CQCD +CSQCD]
αs(s)

π

}

,

where σLO(e+e− → QQ̄φ 0) denotes the LO cross section and C(S)QCD the coefficients of the
(SUSY-)QCD corrections.

For large values of tgβ there are significant non-decoupling corrections to bb̄φ 0 production,
which can be absorbed in the bottom Yukawa couplings in a universal way [3]. In Refs. [4, 5] it has
been shown that these contributions can be resummed to improve the reliability of the perturbative
result.
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2. Results

The numerical results will be presented for a linear e+e− collider with c.m. energy of 1 TeV.
We have chosen the Snowmass point SPS5 for Higgs radiation off top quarks and SPS1b for the
bottom quark case [6]. The pseudoscalar Higgs mass is left free in both scenarios in order to scan
the corresponding Higgs mass ranges.

The total cross section for pseudoscalar Higgs radiation off top quarks is of O(10−2 f b) for
pseudoscalar Higgs masses below about 350 GeV, while above it rapidly increases to a level of
1 fb due to the intermediate on-shell H → t t̄ decay. The total size of the corrections amounts
to O(10%) apart from the threshold of the resonant contribution, where the Coulomb singularity
raises the QCD corrections to more than 100% [7]. The cross section for the light scalar Higgs
boson is always of the order of 1 fb with small corrections due to the partial cancellation of QCD
and SUSY-QCD corrections (see Fig. 1a) while for the heavy scalar Higgs boson it decreases
down to O(10−2 f b) up to the tt̄−threshold. The total cross sections for bb̄φ 0 production reach a
size of O(10 fb) for smaller pseudoscalar masses. All the total cross section drop down towards
MA ∼ 500 GeV, caused by the kinematical closure of the intermediate on-shell HA pair production.
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Figure 1: Relative QCD, SUSY-QCD and total corrections to scalar Higgs radiation off top quark (a) and
bottom quark (b), respectively. The sharp (finite) peak around MH = 350 GeV originates from the Coulomb
singularity in the QCD corrections to the resonant A → t t̄ decay.

The individual relative corrections, defined as σNLO = σLO(1+δQCD +δSQCD), can be inferred
from Fig. 1a for bb̄ + h/H . Except for the threshold region of the resonant part, the QCD correc-
tions are of moderate size [2]. The QCD Coulomb singularity for MA ∼ 350 GeV is much more
pronounced than in the pseudoscalar case, since for the heavy scalar Higgs boson the S-wave pseu-
doscalar Higgs decay A→ t t̄ constitutes the resonant part. The relative threshold corrections remain
finite in both cases due to the remaining continuum contributions. The SUSY-QCD corrections are
of similar magnitude as the pure QCD corrections but of opposite sign. Thus, we observe a large
cancellation of the QCD corrections against the SUSY-QCD part. This signalises the importance
of including both types of corrections in future analyses. An analogous pictures emerges for the
pseudoscalar Higgs boson in the final state. It should be noted that the SUSY-QCD corrections can
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either be constructive or destructive depending on the MSSM scenario.
The relative corrections for associated Higgs production with bottom quarks are depicted in Fig. 1b.
The pure SUSY-QCD and total corrections are shown without and with resummation for scalar
Higgs bosons. It is clearly visible that the resummed bottom Yukawa couplings absorb the bulk
of the SUSY-QCD corrections. After resummation the SUSY-QCD corrections cancel against the
pure QCD corrections to a large extent. Thus, as in the top quark case the inclusion of both cor-
rections is of vital importance. A comparison of the total resummed and unresummed NLO cross
sections implies good agreement within 10% and thus a significant improvement of the perturbative
stability from LO to NLO.

3. Conclusions

We have presented the full SUSY-QCD corrections to neutral MSSM Higgs radiation off top
and bottom quarks at linear e+e− colliders. The size of the corrections is of O(10− 20%) and of
similar magnitude as the pure QCD corrections obtained in the past. This underlines the relevance
of including these corrections in future analyses of these processes at linear e+e− colliders.

At large values of tgβ Higgs radiation off bottom quarks provides a possibility to measure
tgβ [8]. In the past it has been demonstrated that the bulk of the pure QCD corrections can be
absorbed in the running bottom Yukawa couplings, defined at the scale of the corresponding Higgs
momentum flows [2]. We have shown that the resummation of nondecoupling contributions to the
bottom Yukawa couplings reduce the SUSY-QCD corrections to a moderate size, similar to the
pure QCD corrections in the resonant as well as continuum regimes [1].
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