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Starting in two years from now, particle physics will enter a new regime in terms of energies

and luminosities, thanks to the Large Hadron Collider (LHC) at CERN. This report summarizes

the status of the preparations, both for the machine and the detectors, as of fall 2005. The com-

missioning and start-up scenarios are outlined and some highlights from the very rich physics

programme are given, concentrating on measurements of Standard Model processes, as well as

on early discovery scenarios. The prospects of B-physics and heavy ion collisions at LHC are

also briefly discussed. The report concludes with an outlook on the ultimate physics reach and on

upgrade scenarios.
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1. Introduction

We are approaching the start-up of the world’s most powerful particle accelerator ever built.
In about two years from now,CERN’s Large Hadron Collider (LHC) [1] will starts its operation.
Thanks to the unprecedented energies and luminosities, it will give particle physicists the possibility
to explore the TeV energy range for the first time and hopefully discover new phenomena, which
go beyond the so successful Standard Model (SM).

The physics motivations for this new endeavour are manifold. Above all, it is believed that
the origin of electro-weak symmetry breaking will be elucidated. Concretely speaking, this might
consist in the discovery of one or more Higgs bosons and thus confirm the prediction that there is
spontaneous symmetry breaking via the Higgs mechanism [2]. On the other hand, if no evidence
is obtained for a Higgs mechanism, we nevertheless expect new phenomena to show up in the TeV
energy range, which after all have to ensure the conservation of unitarity. The latter is known to be
violated, for example in the scattering of the longitudinal components of two W bosons, if no new
phenomena set in at the TeV scale.

The other main field of activity will be the search for new types of symmetries and parti-
cles, most notably Supersymmetry (SUSY). We refer to [3] for an overview of SUSY and its
phenomenological implications. SUSY is the most prominent and carefully studied model of all
proposed extensions of the SM. It postulates a symmetry between fermions and bosons and intro-
duces a rich new spectrum of particles. This theory has several strong motivations. For example, it
proposes a rather natural solution of the hierarchy problem, if supersymmetric partners of the SM
particles appear with masses below or around the TeV scale. This would prevent the Higgs mass
to acquire enormously large radiative corrections and eliminate the need to have an unnatural fine
tuning in order to explain the apparently small Higgs mass. The appearance of SUSY particles
would also lead to the convergence of the electro-weak and strong coupling constants at an energy
of about 1016 GeV, as generally foreseen in scenarios of Grand Unified Theories (GUT). Finally,
some implementations of SUSY provide an excellent candidate for the dark matter observed in our
Universe, namely the weakly interacting and stable lightest neutralino.

Recently other solutions for the hierarchy problem have been put forward, which postulate the
existence of Extra Dimensions (ED). Some of these models [4] conjecture that the fundamental
scale of gravity could be as low as the TeV scale. The Planck scale only appears as a derived
scale because of the large volume of the EDs and the fact that only gravity can propagate there,
whereas all SM fields are confined to a four-dimensional brane. Thus we see only a small part of
the total gravitational flux, which explains the relative weakness of gravity compared to the other
SM interactions. Other models exist [5] which try to explain the hierarchy problem by a very
strong curvature of the EDs. In general, the phenomenology of EDs foresees the production of
gravitons via parton scattering at theLHC. These gravitons could escape into the EDs, leading to
an apparent violation of energy-momentum conservation in our four-dimensional world, or decay
to SM particles in a resonant-like behaviour.

Of course, atLHC we will also search for new interactions and their related carrier particles,
such as new vector bosons (Z’, W’) with masses of a few TeV/c2. These particles arise in models
which extend the gauge group of the SM, as for example the recent Little Higgs models (see eg.
[6] and references therein). Another proposal to explain electro-weak symmetry breaking is given
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by Technicolor models [7]. Also there we would expect the appearance of heavy resonances.
Besides the direct searches for physics beyond the SM, precision studies of the heavy flavour

sector could lead to indirect evidence for new physics, for example via an enhancement of otherwise
very rare decays. In particular, the very copious production of Bs mesons will allow to complement
the measurements at the B-factories currently in operation. The flavour mixing parameters which
appear in the Cabbibo-Kobayashi-Maskawa (CKM) matrix will be measured using several different
decay channels, hopefully leading to a better understanding of CP-violation in the B-sector.

Finally, theLHC will also allow to collide heavy ions. The unprecedented energy densities
achieved in these collisions are expected to lead to the formation of new forms of partonic matter,
most notably a quark-gluon plasma. The properties of this new state of matter, as well as the phase
transition to hadronic matter will be the subject of an intense research.

This very rich physics programme will be pursued atCERN by observing proton-proton col-
lisions (as well as heavy ion collisions) at four experimental sites around theLHC ring. It will
be installed in the formerLEP tunnel, about 100 m underground with a circumference of approx-
imately 27 km. Two of the four experiments,ATLAS and CMS, will be large general purpose
detectors designed to cover practically the whole range of physics questions outlined above. The
other two experiments are optimized for the study of B-physics (LHCb) and heavy ion collisions
(ALICE).

In the following we will summarize the status of the preparations of the machine and the
detectors and describe the planned start-up scenarios. In a more detailed discussion of the foreseen
physics analyses, emphasis will be given to the early physics reach. The report is concluded with an
outlook on the later physics reach and possibleLHC upgrade scenarios. Other reviews of physics
at the LHC and its preparations can be found in Refs. [8], [9] and [10].

2. Construction status

2.1 Status of the LHC construction

The LHC will be a proton-proton collider with an energy per beam of 7 TeV, a factor of
seven larger than the currently highest energy achieved in the world, namely with theTEVATRON

at FERMILAB. Its main components will be 1232 superconducting dipoles, each 14.2 m long
(magnetic length). When operated at their nominal temperature of 1.9 K, a magnetic field of 8.33 T
is achieved. They are of the "2 in 1" type, meaning that the apertures (56 mm) for both beams have
a common mechanical structure and cryostat. The cryogenic services line (QRL), which distributes
and supplies the liquid helium to the magnets, will be installed next to the beam line.

In total 2808 bunches with a nominal intensity of 1.1× 1011 protons/bunch and a bunch-
spacing of 24.95 ns will circulate in the ring, leading to a nominal luminosity of 1034cm−2s−1.
The total energy stored in the beam will reach a macroscopic value of 350 MJ, which imposes
severe constraints and requirements on its safe operation, since an uncontrolled beam loss unavoid-
ably would damage the equipment. It is worth noting that in terms of stored energy per beam,
the LHC exceeds all previous and existing machines by a factor of 200, thus we enter unexplored
territory, indeed.

The layout of the machine consists of eight independent sectors, in order to handle in a dis-
tributed manner the total energy of 10 GJ stored in the magnets. Being the first machine with
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Figure 1: Left : Lowering of the first superconducting LHC dipole into the tunnel, March 2005. Right :
Interconnection of two dipoles, next to the cryogenic services line.

independent sectors, it presents an enormous challenge for its control and powering. Besides the
four interaction points, where the beams will cross at a nominal angle of 285µrad, there are warm
insertion regions for beam dump, cleaning and acceleration.

The magnet production proceeds very well and is on schedule. To date more than 800 magnets
of excellent quality have been delivered. The first superconducting dipole was lowered into the ac-
celerator tunnel on Monday, 7th March (Fig.1), and by now about 120 dipoles are already installed
in the tunnel. Prior to the magnets the cryogenic services line has to be installed. This has caused
problems in the past, to which CERN has reacted promptly and successfully implemented a recov-
ery plan. To date QRL components for four of the eight LHC sectors have been delivered. The
installation proceeds in three sectors in parallel and almost two sectors have been fully equipped.
Recently the first QRL sub-sector has been successfully cooled down, after solving some minor
problems which appeared during the pressure tests.

The installation of the LHC in the tunnel is on the critical path for the first collisions. The LHC
schedule [11] foresees a parallel installation of pairs of sectors, the last of them to be completed in
June 2007. The first sector pair (sectors 7 and 8) shall be completed by May 2006 and cooled down
for a first test with beam. This will involve beam injection from the SPS down the TI8 transfer line,
right off point 8. The beam will pass through interaction point 8 (LHCb) and then through sector
8-7 before reaching a temporary beam dump. This will be an important system test and allow to
pre-commission essential data acquisition and correction procedures.

2.2 Status of the experiments

The largest of the four detectors,ATLAS [12], is currently being installed in the experimental
cavern. Its enormous size (25 m diameter, 46 m total length and 7000 tons overall weight) is
determined by the muon system, based on air-core toroids equipped with muon chambers. At the
end of summer 2005 all eight of the barrel toroid coils have been installed (Fig.2, left), and the
construction and installation of the muon chambers proceeds on schedule. The construction of
the electromagnetic calorimeter, a lead/liquid argon sampling calorimeter with accordion design,
is completed. It shares the cryostat with the superconducting solenoid surrounding the central
tracking system. After a successful cold test the cryostat has been lowered into the cavern in
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October 2004. Also the hadronic tile calorimeter is already underground and has registered first
cosmic rays in June 2005. The planning for the construction of the tracker, consisting of a transition
radiation detector, silicon strip and pixel detectors, is tight. The emphasis is now switching to the
integration, final installation and commissioning of the sub-systems. An important step in this
direction was a combined test beam campaign in fall 2004, where parts of all sub-detectors have
been integrated and read out together, based on a common data acquisition and detector control
system. The six-months running period has led to a good global operation experience. The common
ATLAS software is now employed to analyse a data set of about 4.5 TByte.

Figure 2: Left : All of the eight ATLAS barrel toroid coils installed in the cavern. Right : Insertion of the
CMS solenoid into the outer vacuum tank.

The second of the two general purpose detectors,CMS [13], is indeed compact when compared
to ATLAS. Its overall diameter is 15 m, its length 21.6 m and its total weight 12500 tons. The main
design difference is that it has only one magnet system. The central superconducting solenoid,
with an inner diameter of 6.32 m and a magnetic field of 4 T, is large enough to house the tracking
system, the electromagnetic and the hadronic calorimeters. The magnetic return yoke, made of iron
rings and disks, is instrumented with muon chambers. The overall assembly of the big mechanical
parts takes place in a surface hall above the experimental cavern at point 5 of LHC. A major
milestone for the magnet has been achieved in summer 2005 with the final assembly of the five coil
modules, its swivelling and insertion into the outer vacuum tank (Fig.2, right), held by the central
barrel wheel. The inner vacuum tank has been inserted in November 2005. The next important steps
will be the first cool-down, followed by the magnet test in spring 2006. This will be combined with
a 20◦ slice test, where parts of all sub-detectors will be read out on cosmic ray triggers. This will
be the first trial of theCMS operation procedures. The lowering of the heavy elements into the
cavern will start immediately after. Concerning the sub-detectors, the muon chamber installation is
progressing very well and the hadron calorimeter, a brass/scintillating tiles sampling calorimeter, is
completed. The production of the 76848 lead-tungstate crystals for the electromagnetic calorimeter
(ECAL) is on the critical path. Its end-caps will only be installed during the first long shutdown at
the beginning of 2008. TheECAL electronics integration is a well established procedure and test
beam measurements in 2004 have shown excellent performance in terms of energy resolution and
noise. Finally, theCMS silicon tracker will be the largest ever built, comprising about 250m2 of
silicon sensors. The sensor module production will be completed in spring 2006. The complete
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tracker has to be integrated atCERN by November 2006 in order to be in line with the overall
installation schedule. Similar to theECAL endcaps, the pixel detector, although ready, will only be
installed after the pilot run in winter 2007-2008.

Next to CMS the TOTEM experiment [14] will be installed. It consists of CSC and GEM
telescopes in the very forward direction around the beam pipe, covering pseudo-rapidity ranges
from 3.1 to 6.5, as well as of roman pots up to a distance of 220 m from theCMS interaction
point. The main goals of this experiment are the measurements of the total, elastic and diffractive
proton-proton cross sections, of the particle and energy flow in the very forward direction and an
absolute luminosity determination. However, in order to carry out this physics programme, very
specialLHC running conditions (optics) are required.

Since the b-quark production cross section peaks at the very forward direction, theLHCb [15]
experiment is designed as a single-arm spectrometer, covering a pseudo-rapidity range of 1.8 <

η < 4.9. The magnet, the electromagnetic and hadronic calorimeters, as well as the iron for the
muon filters have already been installed in the formerDELPHI cavern. Good achievement has been
made for the construction of many sub-systems, such as the vertex locator, the tracking chambers
and the RICH detectors.LHCb will collect data at a lower luminosity of 2×1032cm−2s−1. One of
its essential elements, the trigger system, has been re-organized recently, with a final storage rate
of 2000 Hz after the higher level trigger stage, leading to 109−1010 B-hadrons per year.

Finally, theALICE [16] detector is designed to fully exploit the heavy ion operation ofLHC

(lead ions with 2.76 TeV/nucleon and an initial luminosity of 1027cm−2s−1). It is installed in the
formerL3 cavern and re-uses theL3 magnet. Its main element is a huge time projection chamber of
88m3, which will allow the reconstruction of several thousand tracks per unit of rapidity. Further
emphasis is given to particle identification. Dedicated sub-systems cover restricted angular regions,
such as a forward muon spectrometer based on an additional dipole magnet. An almost complete
detector will be ready for the first proton-proton collisions in 2007. The full detector system will
be operational for the first heavy ion run foreseen in 2008.

3. Commissioning and start-up scenarios

3.1 LHC commissioning and early operations

In order to understand the various steps in the start-up of the LHC operations, it is instructive to
shortly review the main machine parameters and the corresponding limitations. The beam energy
of 7 TeV is limited by the maximal magnetic dipole field available and its field quality. This, on
the other hand, is determined by the industrially available magnet technology. The chosen LHC
magnet parameters (magnetic field, maximal sustainable current density, temperature) leave small
margins for thermal and mechanical stresses, which ultimately lead to quenches.

The nominal bunch intensity (protons/bunch) isN = 1.15× 1011, with an upper limit of
N = 1.7×1011. With 2808 bunches, this corresponds to a maximal beam current ofI = 0.85A.
The limits on these parameters are imposed by several effects. Beam-beam effects, which lead to
a tune (Q) spread, have to be minimized in order to avoid resonances, since the allowed region in
Q-space is rather restricted. Resonances are also avoided by an excellent magnetic field quality,
by correction circuits and optimal feedback from the beam instrumentation. A high operation effi-
ciency and thus the maximal achievable integrated luminosity is obtained by minimizing quenches
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and beam aborts. Here collimators and the cleaning insertions play an important role. However,
the sustainable radiation dose in the cleaning insertions is just compatible with the nominal beam
intensities. Also the enormous energy stored in the beams represents a serious damage potential
and therefore has to be well understood and controlled. The high beam intensities, coupled to
badly conducting collimator materials (eg. graphite) induce large wake fields which cause collec-
tive beam instabilities. This effect can be controlled by first limiting the beam intensity, and second
by a proper choice of collimators. In a first phase, graphite collimators will be used, thanks to their
robustness and thus increased machine safety. Since with this choice the beam current is limited to
I < 0.3A, in a second phase they will be replaced by copper collimators, allowing forI < 0.85A.
These are good conductors, but would be seriously damaged in case of a full beam impact. Finally,
the electron cloud effect [17] puts heat load on the beam screen, which increases for smaller bunch
spacing. Recent studies show that the nominal number of bunches allows for a stable operation, if
there is a prior conditioning of the surfaces by a so-called beam scrubbing. Initially this effect can
be more easily controlled by an increased bunch spacing, for example 75 ns.

The physical beam size,σ =
√

βε, is determined by the machine’sβ -function and the emit-
tanceε = εn/γ, whereγ is the Lorentz factor andεn the so-called normalized emittance. The latter
is limited toεn < 3.75µm by the injector chain and the main dipole aperture. The luminosity at the
interaction points (IPs) increases with smaller beam sizeσ∗, thus a smallerβ -function. Its value
at an IP is denominatedβ ∗. A limit on this parameter (β ∗ > 0.55 m) is imposed by the physical
aperture of the first triplet of superconducting quadrupole magnets around the IPs. Theβ -function
in proximity of an IP can be approximated byβ (s)≈ β ∗+s2/β ∗, sbeing the distance from the IP.
Taking a nominalσ∗ = 16.6µm and a distance to the first quadrupoles of≈ 23m, the beam size at
the quadrupoles is of the order of a millimetre, which starts to be of a similar order of magnitude
as the quadrupole aperture.

For nominal bunch intensities and spacing the beam-beam effects near an IP can be reduced
by introducing a finite beam crossing angle,≈ 300µrad. This crossing angle is again limited by
the aperture of the nearest quadrupole magnets and the corresponding stress on these magnets and
the collimators.

All the above mentioned issues have to be taken into account in order to achieve the main
objective of the early LHC operation, which is to establish colliding beams as quickly as possible,
safely and without compromising further progress. The general approach will be to initially take
two multi-bunch beams with moderate intensity to high energy and collide them at zero crossing
angle. Graphite collimators will be installed at the beginning.

Currently the hardware commissioning, system tests, machine and transfer lines checkout are
foreseen for late spring to early summer 2007. Then the commissioning with beam will start, fol-
lowed by a pilot run in fall 2007. The start-up of the machine is planned in four stages, approaching
gradually the ultimate machine parameters. In a first stage the LHC will run with 43× 43 bunches,
moving to 156× 156 bunches with moderate intensities (N≈ 3×1010), zero to partial squeeze and
zero crossing angle. In a second stage with 936× 936 bunches and partial squeeze a luminosity
of up to 4×1032cm−2s−1 should be reached. The third stage would correspond to the start of the
25 ns operations, with intensities up toN = 5×1010 and almost full squeeze. During this stage a
luminosity of 2×1033cm−2s−1 will be approached, which currently is also assumed in the physics
studies for the first year(s) of LHC operation. The fourth stage, when all parameters will be pushed
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to the nominal values (luminosity of 1034cm−2s−1), will only be reached after a few years. It ne-
cessitates the exchange of the graphite with copper collimators and the installation of the complete
beam dump system. Since it is not clear how fast the first operation stages will be passed through
and what the machine operation and detector efficiencies will be, it is very difficult to give a precise
estimate of the integrated luminosity on tape at the end of 2008, after the first long physics run.
Based on the numbers above, this could be anywhere in the range of 0.1 to 10 fb−1 [18].

3.2 Commissioning of the experiments

All experiments are expected to be ready by end of June 2007. However, parts or all of
the installed sub-detectors can be commissioned and pre-calibrated already well before we have
first collisions in LHC. Cosmic ray muons will be used by all detectors in order to obtain initial
alignment and calibration constants for the barrel parts mainly. These muons are also very useful
for debugging and mapping of dead-channels. An estimate of the rate is approximately 1 - 5 kHz for
muons with an energy at the surface exceeding 10 GeV. Out of these a few Hz might be useful for
calibration. It is worth repeating that some sub-detector systems have already been commissioned
with cosmic muons in 2005, andCMS foresees a full system test at the surface, with the magnetic
field on, in 2006.

Once at least one beam is circulating, beam-halo muons will traverse the experiments and
thus allow for further alignment and calibration efforts, now with emphasis on the end-caps of the
detectors. The rate for muons with an energy above 100 GeV is estimated to about 1 kHz. At
the same time, beam-gas events will be registered, which already resemble the later proton-proton
collisions. However, the spectrum of the produced tracks is much softer, with typicallypT < 2
GeV/c. Nevertheless, with a rate of 25 Hz for reconstructed tracks withpT > 1 GeV/c, coming
from a vertex with|z|< 20cm, it might be possible to obtain a first alignment of the inner trackers
to about 100µm.

Finally, with the first collisions in hand, the trigger and data acquisition systems will be timed-
in, the data coherence checked, sub-systems synchronized and reconstruction algorithms debugged
and calibrated. The electromagnetic and hadronic calorimeters will be calibrated with first physics
events. For example, the initial crystal inter-calibration precision of about 4% for theCMS ECAL

will be improved to about 2% by using theφ -symmetry of the energy deposition in minimum-bias
and jet events. Later the ultimate precision (≈ 0.5%) and the absolute calibration will be obtained
using Z→ e+e− decays and theE/p measurements for isolated electrons, such as in W→ eν

decays [19]. The latter requires a well understood tracking system. The uniformity of the hadronic
calorimeters can be checked with single pions and QCD jets. In order to obtain the jet energy
scale to a few per-cent or better, physics processes such as Z(→ ``)+ jet or W→ 2 jets in top pair
events will be analyzed. Finally, the tracker and muon system alignment will be carried out with
generic tracks, isolated muons or Z→ µ+µ− decays. Regarding all these calibration and alignment
efforts, the ultimate statistical precision should be achieved after a few days of operation in most
cases. Then systematic effects have to be faced, which, eg., implies that pushing the trackerRφ

alignment from an initial 100µm to about 5µm might involve at least one year of data taking. A
more detailed review of the initial detectors and their performance can be found in Ref. [18].
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4. Early Physics

The very early goals to be pursued by the experiments, once the first data are on tape, are
three-fold : (a) It will be of utmost importance to commission and calibrate the detectors in situ,
with physics processes as outline above. The trigger performance has to be understood in a possibly
unbiased manner, by analyzing the trigger rates of minimum-bias events, QCD jet events for various
thresholds, single and di-lepton as well as single and di-photon events. (b) It will be necessary to
measure the main SM processes (cf. section4.1) and (c) prepare the road for possible discoveries
(section4.2).

It is instructive to recall the event statistics collected for different types of processes. For an
integrated luminosity of 10fb−1 per experiment, we expect about 108 W → eν events on tape, a
factor of ten less Z→ e+e− and some 106 tt̄→ µ +X events. Even if a trigger bandwidth of only
10% is assumed for QCD jets withpT > 150 GeV/c, bb̄→ µ +X and minimum-bias events, it still
gives about 107 events on tape for each of these channels. Also the existence of supersymmetric
particles, for example gluinos withmg̃≈ 1 TeV/c2, or a Higgs withmH ≈ 130 GeV/c2, would result
in sizeable events statistics (103−104). Summing up everything, we estimate some 107 events to
tape every three days. Integrated over a full year, this amounts to 1 PByte of data per experiment.
Apart the computing challenge to be faced for the data storage, distribution, reconstruction and
analysis, this means that the statistical uncertainties will be negligible after a few days, for most
of the physics cases. The analyses results will be dominated by systematic uncertainties, be it the
detailed understanding of the detector response, theoretical uncertainties or the uncertainty from
the luminosity measurements. A very detailed review of the early physics cases and the related
analysis issues can be found in Ref. [18].

4.1 Tests of the Standard Model

There are many good reasons to investigate considerable efforts in the measurements of SM
processes. We are sure that these have to be seen and thus they can serve as a proof for a work-
ing detector (a necessary requirement before any claim of discovery is made). Above we have
mentioned that some SM processes are excellent tools to calibrate parts of the detector. However,
such measurements are also interesting in their own right. We will be able to challenge the SM
predictions at unprecedented energy and momentum transfer scales, by measuring cross sections
and event features for minimum-bias events, QCD jet production, W and Z production with their
leptonic decays, as well as top quark production. This will allow to check the validity of the
Monte Carlo generators, both at the highest energy scales and at small momentum transfers, such
as in models for the omnipresent underlying event. The parton distribution functions (pdfs) can be
further constrained or measured for the first time in kinematic ranges not accessible atHERA. Im-
portant tools for pdf studies will be jet+photon production or Drell-Yan processes. Of course, SM
processes are backgrounds for the new physics searches. In particular W/Z+jets, QCD multi-jet
and top pair production will be important backgrounds to a large number of searches and therefore
have to be understood in detail. In the following two examples are discussed a bit further.

Most likely the theoretically best known cross section atLHC will be for lepton pair produc-
tion, via the Drell-Yan production of W and Z bosons. In 2004 the first differential next-to-next-
to-leading order (NNLO) QCD calculation for vector boson production in hadron collisions was
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Figure 3: Left : Predictions for the rapidity dependence of Z boson production at LHC, at various orders
in QCD perturbation theory [20]. Right : ATLAS simulation of the top quark mass reconstruction for an
integrated luminosity of 300pb−1 [23].

completed by Anastasiou et al. [20]. This group has calculated the rapidity dependence for W and
Z production at NNLO (Fig.3, left). They have shown that the perturbative expansion stabilizes at
this order in perturbation theory and that the renormalization and factorization scale uncertainties
are drastically reduced, down to the level of one per-cent. Recent studies [21] conclude that the
dominant uncertainties will be related to the knowledge of the pdfs, currently estimated at the 4-5%
level. This pdf uncertainty, as well as experimental and luminosity uncertainties, can be consider-
ably reduced or completely eliminated by looking at ratios of cross sections, such as the rapidity
dependence of W+/W−. On the other hand, the rapidity dependence of vector boson production
will impose important constraints on the available pdf sets. Finally, in Ref. [22] it has been shown
that the Drell-Yan process will be an important alternative tool for the determination of the ma-
chine and parton luminosities. Again, if normalized to the Drell-Yan production of, eg., Z bosons,
many other SM processes can be predicted with considerably reduced uncertainties and without the
knowledge of the machine luminosity.

LHC will be a top factory and thus offer a very rich top physics programme. Basically top
quark production will be seen immediately. As a recentATLAS study shows [23], even with
a simple selection a very clear peak in the distribution of the reconstructed top mass is obtained
with very small integrated luminosity (Fig.3, right). The selection only requires missing transverse
energy, one high-pT and isolated lepton, at least four jets and a cut on the reconstructed hadronic W
mass, but no b-tag. From this it is clear that, contrary to theTEVATRON, top production will be an
important calibration tool, both for the jet energy scale by looking at the hadronically reconstructed
W mass and for the b-tagging algorithms. Some of the physics topics to be addressed will be the
measurements of top quark properties, such as its production and decay probabilities, its couplings,
spin and mass. For the latter an ultimate precision of 1 GeV/c2 is claimed to be achieved.

4.2 Early discovery scenarios

Regarding possible scenarios of discoveries to be made with the first year’sLHC data, we
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summarize a study published in Ref. [18]. There three cases have been identified according to
the experimental and theoretical difficulties to be faced in order to have an unambiguous claim of
discovery : (a) An "easy" case would be the appearance of a new heavy resonance which decays into
electron or muon pairs; (b) an intermediate case could be the search for supersymmetric particles;
(c) the discovery of a very light Higgs (mH ≈ 120 GeV/c2) is considered to be a difficult case.
Whatsoever scenario is realized in nature, it is clear that theLHC is a perfect place to look for
evidence of new physics in the TeV energy range, thanks to the large phase space and the large
rates for new particles production predicted by many of the SM extensions.

First we discuss the "easy" case. We use the notation Z’ for any generic new heavy gauge boson
with a mass up to several TeV/c2. Such heavy gauge bosons appear in models with extensions
of the SM gauge group, such as the recent Little Higgs models [6], in theories with dynamical
electro-weak symmetry breaking or generally in Grand Unified Theories (GUTs) (see Ref. [24]
for an overview of Z’ searches). If such a heavy gauge boson has SM-like couplings to leptons
and quarks, we could expect sizeable production cross sections and branching ratios to e+e− and
µ+µ−, resulting in a very clear signature above a low and well understood background. The decay
leptons would have very high transverse momentum and be isolated, thus easy to be triggered on.
Figure4 (left) shows the result of aCMS study [25] for the detection of a Zψ [26] with a mass of 1
TeV/c2 via its decay into muon pairs, after trigger and offline reconstruction. Already with less than
1fb−1, such a signal cannot be missed. A similar study byATLAS concludes that a Z’, predicted by
a Sequential SM [27], could be detected with about 1.5fb−1 up to masses of 2 TeV/c2, via its decay
to e+e−. The necessary energy calibration and understanding of the lepton identification efficiency
will be obtained from the processes Z→ ``+ jet and Drell-Yan Z production, measured on the real
data.

Heavy resonances also appear in models with extra dimensions. A particular realization of the
Randall-Sundrum (RS) model with massive Kaluza-Klein excitations (gravitons) around 1 TeV has
been analyzed using the full detector simulation and reconstruction ofCMS [28]. For sizeable
couplings to electrons such a graviton would result in a very clear peak in the invariant mass
distribution of high-pT and isolated electron-positron pairs, over a very small background, allowing
an unambiguous discovery with 10fb−1 of collected data. An important experimental aspect, which
has been considered here, is that electrons in the TeV energy range may lead to saturation effects
in the readout of the electromagnetic calorimeters. Once the existence of such a heavy resonance is
established, it will be most exciting to analyse the further data and discriminate between the various
models which predict such an object. Possible approaches will be to measure forward-backward
asymmetries in the case of a Z’ [29] or to look for other hints of extra dimensions such as large
missing energy or very energetic isolated photons.

A large fraction of the analyses for an early discovery atLHC concentrate on supersymmetric
extensions of the SM. Because of the extremely large parameter space, some specific benchmark
models and points in parameter space have been chosen [31] for a more in-depth study of the dis-
covery potential, such as mSUGRA with its minimal set of five parameters (for an introduction see
[3] and references therein). Among these are the universal scalar (m0) and gaugino (m1/2) masses,
which are fixed at the GUT scale. The full spectrum of supersymmetric particles at the TeV scale
is then derived by simply employing the renormalization group equations. Over a considerable
region of the parameter space, the production cross sections for supersymmetric partners of quarks
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Figure 4: Left : Simulated appearance of a Zψ resonance in the invariant mass spectrum of muon pairs
measured in CMS [25]. Right : Reconstructed effective mass (see text for its definition) for various SM
backgrounds and a SUSY signal as predicted for a particular point in the mSUGRA parameter space. The
results have been obtained with a simulation of the ATLAS detector [30].

(squarks) and gluons (gluinos) are very large, thanks to their strong (QCD) couplings to the incom-
ing partons. As an example, up to 100 events per day would be expected for gluino and squark
masses of∼ 1 TeV/c2, at a luminosity of 1033cm−2s−1. The subsequent decays, which typically
occur via cascades to lighter supersymmetric (eg. charginos, neutralinos) and SM particles, lead to
spectacular experimental signatures with very characteristic topologies. These are triggered on by
looking for high-energetic multi-jet and multi-lepton events. IfR-parity is conserved, the lightest
SUSY particle (a neutralino in most models) would escape undetected. Therefore one of the most
important characteristics (and trigger conditions) of such events would be large missing energy,
/ET. A general approach of SUSY searches consists in the analysis of topological variables, such
as the effective massMeff = /ET +∑ pjet

T , cf. Fig.4 (right). A SUSY signal is expected to appear as
an excess over the SM backgrounds (top production, W/Z+jets, QCD multi-jet events) in the large
Meff region. However, in order to have clear evidence of a signal, two important aspects have to
be considered. First, a good experimental understanding and calibration of the/ET measurement is
required. Second, a good theoretical control of the many SM backgrounds is not trivial to achieve
with the current predictions and Monte Carlo models at hand. The problem is that multi-jet events,
particularly in the high-ET tail, are known to be badly simulated by the widely used parton shower
models. The incorporation of matrix element corrections is absolutely essential for a reliable pre-
diction [18]. Various approaches in this direction have appeared recently [32], but still a lot of effort
is needed in order to reach a mature level of understanding. Therefore an early SUSY discovery
via a topological search is considered to be of "intermediate" difficulty. However, if the above-
mentioned issues are under control, squarks with masses up to 1.5 (2) TeV/c2 will be discovered
with only 1 (10) fb−1 of data on tape.
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The electro-weak fits in the context of the SM, combined with the limits from the directLEP

searches, indicate that we can expect a Higgs boson with 114< mH < 219 GeV/c2 [33], with a
preference for a very light Higgs,mH ≈ 120 GeV/c2. In this mass range the dominant production
mode is gluon fusion, but additional channels such as vector boson fusion (VBF) and associated
Higgs production (WH, ZH, t̄tH) are also considered. A very light Higgs dominantly decays to
bb̄ pairs. Because of the enormously large QCD backgrounds, a detection in this decay channel
might only be possible in the tt̄H case. However, this will be extremely difficult, both because of
experimental issues (jet energy scale, combinatorics, b-tagging) and the theoretical control of the
backgrounds, such as tt̄+jets. The channel H→ ττ is investigated for VBF, which requires an ex-
cellent experimental understanding of very forward jets, a central jet veto and aτ trigger with good
efficiency. Although their branching ratios are at the per-cent or even per-mille level, the channels
H→ ZZ∗→ 4` (` = e,µ) and H→ γγ are the most promising ones. In both cases the experimental
signature would be a clear mass peak over a rather smooth background. In the former case good
momentum resolution and understanding of the lepton isolation efficiency is required. The H→ γγ

case has been the benchmark channel for the design of the electromagnetic calorimeters, since a
detection above the very large background is only possible with a mass resolution at the 1% level.
This channel is studied for inclusive production, but also in the context of VBF and associated
Higgs production. For a Higgs mass between 140 and 180 GeV/c2, the most promising discovery
channel turns out to be H→ WW∗ → 2`2ν , although a mass peak reconstruction is not possible
because of the neutrinos. Nevertheless, with a jet veto and cuts related to the lepton kinematics a
signal over background ratio above unity is achieved and a discovery should be in reach with the
first few fb−1 of data [34].

In summary, in the context of the SM a Higgs with a mass around 120 GeV/c2 can be detected
in the first 10fb−1 of data only if several channels (and the experiments) are combined. Each of the
channels H→ γγ, t̄tH→ b`ν bjjbb and qqH→ qqττ might contribute some 2σ of total significance
per experiment. Thus an observation of all channels is important. This requires well functioning
experiments, due to the many different requirements on the detector performance, as well as a good
theoretical understanding of the backgrounds (tt̄j, tt̄jj, W/Z+jets, QCD multi-jets, prompt photon
production) at the 10% level or better. It is worth noting that considerable progress has been
made recently in the calculations of higher order QCD corrections andpH

T resummation for Higgs
production, see eg. Refs. [35, 36]. Also the case of supersymmetric Higgs bosons is investigated,
in particular for large tanβ (the ratio of the vacuum expectation values of the two Higgs doublets)
when the Higgs coupling to b̄b andτ+τ− is enhanced. Summaries of the discovery potentials for
various SUSY parameter regions can be found in Refs. [37] and [38].

4.3 The relevance of B-Physics

Heavy flavour and in particular B-physics will be part of the toolkit to look for new physics
at LHC. It will be possible to over-constrain the CKM matrix in many ways, to compare tree-
level dominated processes to processes which involve penguin or box diagrams, and thus to reveal
new (CP violating) physics in case discrepancies are found. The CKM-angleγ will be measured
by LHCb in various channels, with different sensitivity to new physics. For example, the time-
dependent CP asymmetry of Bs → D−

s K+ depends onγ already at the tree level, in contrast to
B0 → π+π− and Bs→ K+K−. A comparison of the asymmetries in these channels, as well as of
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the various decay rates in the B0→D0K∗0 system will give further sensitivity. A special advantage
of LHC compared to B-factories is the copious production of Bs mesons. The b→ s transition is an
interesting candidate for the appearance of new physics. Rare decays could reveal new phenomena
up to the TeV energy scale and complement the direct searches. Deviations from the SM predictions
may be seen in the Bs→ φφ decay and in some regions of the SUSY parameter space the branching
ratios for Bs→ µ+µ−, Bd→K∗µ+µ− and Bs→ φ µ+µ− are considerably enhanced above the SM
values. Finally, the Bs mixing and oscillation may be affected. This could be observed by a larger
than expected CP violation in Bs→ J/ψφ or by an oscillation frequency∆ms which is higher than
the SM expectation (around 20ps−1). The LHCb experiment is very well designed to measure
the ∆ms parameter, thanks to its dedicated triggers, good particle identification capabilities and
excellent proper time resolution (40 fs). This allows to achieve a∆ms reach of 68ps−1 with one
year of data taking.ATLAS andCMS do not have specialized particle identification, but will run
at higher luminosities and thus complementLHCb in the analyses of rare decays. Reviews of the
current status of B-physics and theLHCb physics programme can be found in Refs. [39] and [40].

4.4 The study of heavy ion collisions

The physics of heavy ions and strong phase transitions might enter a real discovery regime at
LHC, thanks to the higher centre-of-mass energy and a ten-fold increase in the energy densityε

[GeV/fm3] compared toRHIC at Brookhaven. A particular feature ofLHC is that for the first time
high-pT objects (jets, quarkonia) will be produced in heavy ion collisions, with huge statistics in a
large variety of processes. Medium effects, such as medium-modified QCD radiation, are expected
to be large and will be studied in detail. The energy loss of a high-pT parton, when traversing
the dense medium formed in heavy ion collisions, can be observed as jet quenching. At the same
time it is interesting to measure the low-pT tracks in order to get an understanding of the energy
flow in these events. Jets, quarkonia and open flavour production are hard probes of the produced
dense matter and will hopefully give unprecedented access to the equilibrium and non-equilibrium
QCD dynamics. TheLHC considerably extends the kinematic range in the small Bjorken-x regime
and therefore might give insight into phenomena such as perturbative saturation. Finally, collective
phenomena such as radial and elliptic flow are expected to be even stronger than atRHIC, where
indications have been reported that the formed medium shows strong collective behaviour, support-
ing the picture of an almost ideal liquid [41]. One of the first (immediate) measurements, already
with about 105 events, will be the determination of the actual multiplicity per unit rapidity. This
rich physics programme will be addressed byALICE and complemented byCMS and ATLAS.
Qualitatively new experimental tools will be employed, such as very large rapidity coverage, high
granularity and, in the special case ofALICE, excellent particle identification systems. A recent
overview and outlook on heavy ion physics is found in Ref. [42].

5. Physics reach and upgrades

Obviously it is very difficult to predict the various physics scenarios after the first years ofLHC

running, since this strongly depends on early discoveries (or simple confirmations of the SM). If
one or more Higgs bosons are found, then the next step will be to measure its (their) parameters
(masses, couplings). However, in order to reach the ultimate precision and sensitivity, an integrated
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luminosity of up to 300fb−1 will be needed. Most likely the Higgs self-coupling will not be acces-
sible, even with such a large data sample, and its measurement has to be postponed to a possible
Super-LHC (SLHC). If there is first evidence for the production of SUSY particles, the following
years will be devoted to the measurement of the sparticle masses, eg. by studying cascade decays
and the related end-points of the lepton spectra. A non-trivial question to be answered will be the
identification of the actually realized SUSY model and the underlying SUSY-breaking mechanism.
Definitely one of the most outstanding successes ofLHC would be the establishment of a clear
connection to cosmological questions, eg. the discovery of a dark matter candidate such as a neu-
tralino. Nevertheless, this has to be complemented by direct astro-physical observations in order
to have a firm understanding of the important dark matter issue. AtLHC it will be difficult or even
impossible to observe sleptons with masses above 350 GeV/c2, to explore the full gaugino mass
spectrum, to measure the spin-parity and couplings of all sparticles and to disentangle squarks of
the first two generations. An international linear collider would definitely offer a complementary
approach to these problems. Finally, if none or only some of the above discoveries are made, all
efforts will be dedicated to the search for other mechanisms of electro-weak symmetry breaking
and/or extra dimensions. In the case no Higgs is found, we will concentrate on the resonant (’easy’)
or non-resonant (’very difficult’) scattering of the longitudinal components of two W bosons, since
unitarity conservation tells us that something has to happen there when approaching the TeV energy
scale. Ultimately it could be that we have to accept fine tuning, as for example suggested by "Split
SUSY" models [43]. Whatever nature is going to offer us, we are convinced that theLHC experi-
ments are designed such that they are also ready for the unexpected. A more detailed discussion of
the ultimate physics reach can be found in Refs. [8] and [9].

Possible upgrade scenarios of the machine and the experiments in view ofSLHC are already
under study. For the machine, the first step would be to push its parameters to the ultimate limits
(eg. increase the beam energy to 7.45 TeV and the intensity to 1.7×1011 protons/bunch), without
any hardware modifications. In a second phase the performance would be further improved by mod-
ifications in the insertion regions, for examples regarding the superconducting triplet quadrupole
magnets. The bunch spacing may be reduced to 25 ns (if the electron cloud effect is under control),
theβ ∗ lowered to 0.25 m and the beam crossing angle increased to 445µrad. Although the peak
luminosity might reach values close to 1035cm−2s−1, future studies will have to watch closely the
luminosity lifetime (efficiency) of the machine, due to an increased energy stored in the beams and
thus increased demands on machine control and protection. A further performance upgrade in a
third phase would only be possible with major hardware modifications.

Also within the experiments the R&D for aSLHC upgrade has started already now. The
detector upgrades have to take into consideration increased radiation levels and pile-up noise. A
reduced bunch spacing will require hardware modifications for the first-level triggers. The forward
regions will be under particular radiation pressure, thus an improved shielding is under discussion.
Generally, the developments go into the direction of faster and more granular sub-detectors, most
notably new tracking systems. Recent reviews of the requirements and developments are found in
Refs. [44] and [45].
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6. Conclusions

A very exciting period for particle physics is lying ahead of us. At theLHC we will explore the
TeV energy scale for the first time, with a direct discovery potential up to several TeV. We expect
to answer many of the current questions regarding the extensions of the SM, and possibly new
questions will arise.CERN is fully committed to theLHC project. The machine and the detectors
will be ready for first beams in summer 2007.
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