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Twistor Sring Theory and QCD

1. Introduction

In two years, a new window will open into physics at the shortest distance scales. The Large
Hadron Collider (LHC) will begin operation at CERN, providing proton-proton collisions at 14 TeV
center-of-mass energy, seven times greater than the 2 TeV currently available in pp collisions at
Fermilab’s Tevatron. The LHC luminosity should be a factor of 10 to 100 greater than the Teva-
tron’s. The combined rise in energy and luminosity will lead to a huge increase in the production of
particles with masses in the range 100—1000 GeV, including electroweak vector bosons, top quarks,
Higgs bosons, and of course new particles, representing physics beyond the Standard Model.

There are a lot of ideas for physics beyond the Standard Model, many associated with the puz-
zle of electroweak symmetry breaking, and with resolutions of the hierarchy problem — why the
weak scale is so much smaller than the Planck scale. Supersymmetry, for example, predicts a host
of new particles in the 100—1000 GeV mass range, including (in most versions) a stable dark matter
candidate. However, many other theories — new dimensions of space-time, new forces, etc. —
often make qualitatively similar predictions. How can we sort out the predictions of these theories
from each other, and from the omnipresent Standard Model background at a hadron collider?

The short answer is that a thorough, quantitative understanding of both the new physics sig-
nals and the Standard Model backgrounds is required. Much work has gone into these problems,
stretching back over many decades. This talk will focus on some recent developments, novel meth-
ods to help compute the backgrounds in particular, that have emerged since the Fall of 2003, when
Witten introduced twistor string theory and explained its relevance to perturbative QCD [1]. In
truth, the new methods have not yet had a direct phenomenological impact, in terms of producing
more accurate cross sections that have not previously been obtained in any other way. But they
have a lot of promise, and it should not be long before they do so.

What are some generic properties of the new physics signals? Except for stable, neutral dark
matter candidates, the new massive particles typically decay into “old” Standard Model particles:
guarks, gluons, charged leptons and neutrinos, photons, Ws and Zs. For example, in supersymmetry
the superpartner of the gluon, the gluino, may be among the heavier superparticles, yet still be
copiously produced at the LHC, due to its large adjoint color charge. Figure 1 shows a typical
decay cascade, initiated by one of the two gluinos (§) in a pair-production event. The quarks and
gluons emerge as jets of hadrons. The lightest superpartner, a neutralino (x°), is stable and escapes
the detector. The kinematic signatures of such events are not always clean: There can be a large
number of observed particles (charged leptons or jets), and no invariant-mass bumps, because of the
escaping neutralinos and possibly neutrinos (although there can be kinematic edges). The escaping
neutralinos provide a missing transverse energy signal, but Standard Model production of Z bosons,
followed by Z decays to neutrinos, can mimic this to some degree.

In order to maximize the potential for the discovery and interpretation of new physics at the
LHC, we need to quantify the Standard Model backgrounds for processes that may contain several
jets and (perhaps) a few electroweak bosons. These processes are complex, so we should try to take
into account any simplifying features. Notice that the masses of the observed final-state particles
in these reactions (e.g. in fig. 1) are generally negligibly small in these reactions, except for the
cases of the W, Z, or top quark. Even these particles immediately decay to essentially massless
quarks or leptons, however. So if we include the decay processes in the description of the event,
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Figure 1. Typical cascade decay of agluino to two quarks, agluon, aW boson which decaysto two leptons,
and a neutralino. Aside from the neutralino, all the fi nal-state particles are essentially massless.

every final-state particle is approximately massless. We can also (usually) neglect the masses of the
colliding partons (quarks and gluons). In general, then, the backgrounds (and many signals) require
a detailed understanding of scattering amplitudes for many ultra-relativistic (massless) particles —
especially the quarks and gluons of QCD.

Asymptotic freedom [2] allows us to compute such scattering amplitudes as a perturbative
expansion in the strong coupling constant as(u), evaluated at a large momentum scale u where it
is small. For typical collider processes, u could be of order 100—200 GeV, for which as(u) ~ 0.1.
One might expect that the leading-order terms in the expansion (tree amplitudes) would suffice to
get a 10% uncertainty. However, this is not the case for hadron collider cross sections; typical
corrections from the next-to-leading order (NLO) terms in the as expansion are 30% to 100%.
There are several possible reasons for the large corrections, depending on the process: there may
be different scales involved, leading to large logarithms of the ratio(s) of scales; new partonic
subprocesses may first arise at NLO; the lowest-order process may have several factors of o in it;
and so on. In any event, a quantitative description of collider events requires evaluation of cross
sections at NLO in QCD, which in turn requires, as input, one-loop amplitudes as well as tree
amplitudes. If a precise evaluation is needed (below 10% uncertainty), then the next-to-next-to-
leading order terms, involving two-loop amplitudes, may also be required.

In principle, Feynman rules [3] are all we need to evaluate the tree and loop amplitudes. In
practice, however, although Feynman rules are very general, applying to any local quantum field
theory, by the same token they are not optimized for the problems at hand. More efficient methods
are available, which make use of the extra symmetries (some hidden) of QCD.

2. Transforming to twistor space

An easy way to see that there should be more efficient methods out there is to notice that many
QCD amplitudes are much simpler than expected. For example, the tree-level amplitudes for the
scattering of n gluons turn out to all vanish, if the helicities of the gluons (considered as outgoing
particles) are either a) all the same, or b) all the same, except for one of opposite helicity. Using
parity, we can take the bulk of the gluons to have positive helicity, and write this vanishing relation
as

Alee(1% 2+ 37 .. .n")=0. (2.1)

This vanishing is somewhat mysterious from the point of view of Feynman diagrams. On the other
hand, it can be demonstrated simply using Ward identities arising from a secret supersymmetry that
tree-level QCD amplitudes possess [4]. This symmetry allows two of the gluons to be replaced by
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their superpartners, gluinos, which can be taken to be massless here. Helicity conservation for the
gluinos then implies the vanishing of the amplitudes.

The first sequence of nonvanishing tree amplitudes has two gluons with negative helicity, la-
belled by j and I, say, and the rest of positive helicity. This sequence of maximally helicity-
violating (MHV) amplitudes has an exceedingly simple form [5, 6],

MHV,jl _ atree/q+ o+ P — +\ <j|>4
ATV = AR 2T, N )_l<12> 23 (D)’ (2.2)
in terms of spinor products (i j) we shall define shortly. Equation (2.2) is the expression for, not
the full amplitude, but rather a piece of it where the n gluons have a definite cyclic ordering. The
full amplitude can be built out of permutations of such partial amplitudes, as reviewed for example
in ref. [7]. Some of the structure of eq. (2.2) follows from supersymmetry, but not all.

To see much more of the structure, Witten [1] transformed the amplitudes (2.2) from the tra-
ditional momentum-space variables, into a twistor space invented by Penrose [8]. The twistor
transform is a kind of Fourier transform. There are many examples where transforming a problem
into the right variables can expose its simplicity. For example, if we measure the time dependence
of the electric field E(t) associated with the light emerging from some glowing sample of gas,
we find a fairly unenlightening waveform. However, if we use a spectrometer to measure instead
the frequency (energy) spectrum of the light, that is, E(w) = [ dte“*E(t), we find spectral lines,
which are clues toward decoding the structure of the emitting gas. In in an analogous way, the
twistor transform exposes certain lines on which QCD amplitudes are localized or supported, thus
revealing more of their structure, and giving rise to new, more efficient ways to compute them.

Before describing the twistor transform, however, we should discuss the spinor variables used
in eq. (2.2), because they are well-suited for describing scattering amplitudes for massless particles
with spin, and are the starting point for the twistor transform. Leti=1,2,... n label the parti-
cles being scattered. Usually, the four-momentum vectors ki“ , Which transform under the spin-1
representation of the Lorentz group, are used as the arguments of the amplitude, A= A(k;). The
relativistic invariants constructed out of these vectors are the Lorentz inner products, or invariant
masses, §; = 2k; - kj = (ki + kj)z, which are equivalent in the massless case, k? = 0. However,
for massless particles with spin, it is better to “take the square root” and use, instead of ki“ , ob-
jects transforming as the spin-1/2 representation of the Lorentz group, namely the massless Dirac
spinors associated with momentum k;, u (k;), where the £ sign labels the helicity. A shorthand
notation for the two-component (Weyl) versions of these spinors is,

Mo = [u.(k)]gr g = [u-(5)] - (2.3)

We can always reconstruct the momenta from the spinors, using the positive-energy projector
for massless spinors, u(k)u(k) = k, or in two-component notation,

K (O e = (K)aa = ()‘i)a(ii)a- (2.4)

Equation (2.4) shows that a massless momentum vector, written as a bi-spinor, is the product of a
left-handed spinor with a right-handed one.
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Figure 2: Contrasting collinear behavior of amplitudes in (a) massless scalar @° theory, where there is no
angular-momentum mismatch, and (b) massless gauge theory, for example a gluon splitting into two gluons,
where there is always a mismatch.

Instead of Lorentz inner products of momenta, s;; = 2k; - k;, we use spinor products, defined
by

(1) =P ADaA)p =0 (up (), [[11=ePA)a(A); =0, (u (k).  (25)
where £98 and £98 are antisymmetric tensors for U (2). These products satisfy

(1) = 5 Trlkk ] =26 -k =, (2.6)

So they are just the square roots of the Lorentz inner products, up to a phase ¢,

() = \/s*“éq’n, [j1] = i\/s*“e*i"’il. (2.7)

The utility of spinor variables for QCD amplitudes was recognized already in the 1980s [9,
6]. They precisely capture the “square-root-plus-phase” behavior of gauge theory amplitudes as
the momenta of two of the particles, i and j, become collinear. This behavior arises because
the sum of the helicities of the final-state particles is never equal to the helicity of the almost-
on-shell intermediate particle, as illustrated in fig. 2(b) for the case of a gluon splitting into two
gluons, for which 4141 # +1. This mismatch in angular momentum along the collinear direction
lessens the singularity, from 1/sﬂ- (the behavior of the scalar theory shown in fig. 2(a)) to 1/ VETE
It also introduces a phase depending on the azimuthal angle, which is conjugate to the angular
momentum. Equation (2.7) shows that both characteristics are captured by putting a spinor product
in the denominator of the amplitude, explaining why the spinor products are natural variables to
use. In other words, we should write A= A()\i,ii) instead of A= A(k;).

Now we can describe the twistor transform [8, 1]. It is a “half” Fourier transform, in which
the right-handed spinors A; are left untouched, but each left-handed spinor ;\i is exchanged for its
Fourier conjugate variable L, defined by
a—_j

.0
AGZIW’ H

— 2.8
7 (2.8)
(These relations are completely analogous to the standard Fourier relation between momentum and
position, x =id/dp, p= —id/dx.) Since the spinors and their conjugates each have two com-
ponents, twistor space has four coordinates (for each external particle), (A, A, ui, ué). However,
because amplitudes are only defined up to a phase associated with external states, two points in
twistor space are equivalent if the four coordinates differ by a constant multiple & (the complexifi-
cation of the phase), o o

Ay, Ag, ' %) = (8D, €D, E it E ). (2.9)
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(@) MHV (b) NMHV (c) NNMHV

Figure 3: Tree amplitudes for n gluons are supported on networks of intersecting linesin twistor space. The
number of linesis one fewer than the number of negative-helicity gluons.

So in fact (projective) twistor space is three-dimensional.
What do amplitudes look like in this space? We can compute them by Fourier transforming,
just as we would to take a wave-function from position-space to momentum-space [1],

ANA) = A()‘iaﬂﬂ:/_ﬁdj‘iei“ixA(/\iaii)- (2.10)

The simplest cases to consider are the MHV amplitudes (2.2), which contain only angle brackets
({i j)), and so depend almost exclusively on the right-handed spinors A;, AMHV (A, 1) = AMHV ().,
Their only dependence on the left-handed spinors is through the usual momentum-conserving 8-
function (which was implicit in eq. (2.2)). This factor can be written, using the identity

54 (k) = / d*xexplik-X] 2.11)
and eq. (2.4), as
54(ii|q) - / d*xexp [ixadi(m)a(}\i)a] 2.12)
Then the transformed amplitudes are
AW O = | ﬂdii explin ] [ ax AV (3 explioh i
- / d*x AMHV (1) / i|jo|?\iex|o[i(ui+xx\im
— AVHV()) / d4xi|£l (s +XA,). 2.13)

The product of all the linear d-function constraints simply means that the amplitude is supported
on a line in twistor space, as shown in fig. 3(a).

More complicated amplitudes can also be inspected. The first nonvanishing, non-MHV n-
gluon amplitudes are the six-gluon amplitudes with three positive and three negative helicities, first
computed, from 220 Feynman diagrams, in 1988 [6]. The simplest case, where the three positive

405/6



Twistor Sring Theory and QCD

helicities are adjacent, is given by,

([12](45) (67| (142)|37))?

tree 1+ o+ 2+ 41— E— ) — i
ATE(1F 2+ 3t 47 57 67) =i Sy (2.14)
([23](56) (47| (2+3)|17))?
$35345565%1 5561
| 51 [12][23] (45) (56) (67| (1+2)[37) (47| 2+3)|17)]
S$12523534545556 561

where s, . = (ka+k,+ke)? and (a~ | (b+c)[d™) = U_ (ka) (K, + ke)u_ (k).

The seven-gluon amplitudes were also computed around this time [10], using off-shell recur-
sive methods [11] to avoid dealing directly with the 2,485 Feynman diagrams. The explicit results
in this case fill several pages. Computing the twistor transform via eq. (2.10) is rather difficult.
However, suppose one has a guess for how the amplitudes are supported in twistor space, for ex-
ample that they are localized on some curve described by a polynomial equation C(Z;) = 0, where
Z= (Al,/\z,ul,uz). Then it is relatively easy to check such a guess back in spinor-space, where
C(Z;) becomes a differential operator, since y; = id/d;\i. Applying C(Z;) to A(/\ij\i), if the result
vanishes identically then the amplitude is supported on the curve; that is, either C=0 or else A=0.

This method was used last year by Cachazo, Svréek and Witten [1, 12, 13] to build up evidence
for the picture illustrated in fig. 3. Scattering amplitudes for n gluons, of which n_ have negative
helicity, are localized in twistor space on networks of intersecting lines, where the number of inter-
secting lines is n_ — 1. The MHV case, n_ = 2, was discussed above. The next-to-MHV (NMHV)
amplitudes with n_ = 3, for example the six-gluon example in eq. (2.14), are sums of terms, each
of which is supported on a pair of intersecting lines, as shown in fig. 3(b). The partitioning of
points among the lines can vary from term to term. Three intersecting lines are needed to describe
the next-to-next-to-MHV (NNMHV) amplitudes with n_ = 4 (fig. 3(c)), and so on.

3. MHV rules

While the twistor structure shown in fig. 3 is extremely appealing, it does not directly yield the
numerical values of the amplitudes. However, Cachazo, Svréek and Witten [12] also wrote down
a set of diagrammatic “MHV” rules, which can be used in place of Feynman rules to compute
the amplitudes, and which make the twistor structure in fig. 3 manifest. Each MHV diagram
generates a term in the amplitude which has one of the possible twistor structures, taking into
account the possible partitionings of points among the (n_ — 1) lines. For example, the MHV
diagram in fig. 4, for an amplitude with n_ = 4, corresponds to the twistor structure in fig. 3(c).
The helicities of internal, as well as external, gluons are labeled by = in the diagram. Each vertex
must have exactly two negative-helicity gluons attached to it, but it can have an arbitrary number
of positive-helicity gluons, just like the MHV amplitude (2.2). In fact, the rule for this MHV
vertex (the complex number associated with it) is given by eq. (2.2), with a simple prescription for
continuing intermediate legs off shell. The rule for an internal line is a factor of i /p?, much like a
scalar propagator. For processes with a large number of gluons, there are considerably fewer MHV
diagrams than Feynman diagrams, because many Feynman subdiagrams get lumped into single
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Figure 4: Example of an MHV diagram, corresponding to fi g. 3(c).

MHYV vertices. Also, the algebra required to evaluate each diagram is considerably simpler than
for the typical Feynman diagram, because there is no tangle of Lorentz indices to follow.

Because the MHV rules are so efficient, they were quickly generalized to a more general set
of processes of interest in the context of LHC signals and backgrounds: tree-level QCD amplitudes
containing massless external fermions as well as gluons [14]; those with a Higgs boson, which
couples to gluons via HTr(G,,GHY) in the large m limit [15]; and amplitudes including one or
more electroweak vector bosons in addition to massless quarks and gluons [16]. A set of scalar-
type rules for QCD with massive quarks (e.g. the top quark) was also produced, starting directly
from the QCD Lagrangian [17].

4. Twistor structure at one loop

In parallel with the extension of tree-level MHV rules to different processes, the twistor struc-
ture of one-loop amplitudes began to be investigated [13]. For multi-particle processes, one-loop
amplitudes are much more intricate than tree amplitudes. Their twistor structure is also complicated
by a “holomorphic anomaly” [18], in which derivatives from py; = id/c?;\i act near singular regions
of the loop integration. For these reasons, it has proven simpler to proceed by first representing
amplitudes as linear combinations of various types of basic one-loop integrals — boxes, triangles,
bubbles, etc. — and then examining the twistor structure of the coefficients of these integrals.

The simplest situation to consider is a “toy model” for perturbative QCD, namely its maximally
supersymmetric cousin, .4~ = 4 super-Yang-Mills theory. In this theory, the coefficients of the
triangle and bubble integrals all vanish, reducing the problem to that of determining the coefficients
of box integrals [19]. These coefficients can be found quite readily [18, 20, 21, 22] by inspecting
either standard two-particle unitarity cuts [23, 19, 24], or (more efficiently) generalized cuts [25,
26] where four propagators are held open [21].

The resulting twistor structure [20, 22, 27] is illustrated in fig. 5. In the MHV case shown in
fig. 5(a), the only nonvanishing box coefficients are those where two of the external momenta for
the scattering amplitude, s, and s,, are also momenta for the box integral; the remaining external
momenta are partitioned into two diagonally opposite clusters, A and B. This integral is referred
to as a two-mass box, because the clustered momenta K, = ;.. ki and Kg = ¥; gk are massive,
K,iB = 0. The coefficient of the two-mass box [19] is just the MHV tree amplitude (2.2), which is
localized on a single line in twistor space (see fig. 3(a)). In fig. 5(a), the single line has been redrawn
as a pair of lines intersecting in two points, s; and s,, to make its appearance consistent with an
“MHV rules” approach to one-loop amplitudes [28], and with the pattern found for more negative-

405/8



Twistor Sring Theory and QCD

s, s D
e obe o
! : :

c A DINA
< B{}A %:% c
| s B B
(a) MHV (b) NMHV (c) NNMHV

Figure 5: Twistor structure of box integral coeffi cients for one-loop amplitudesin .4 = 4 supersymmetric
Yang-Millstheory. For each series of amplitudes, (8) MHV (n_ = 2), (b) NMHV (n_ = 3), and (c) NNMHV

(n_ = 4), the type of box integral having the simplest nonvanishing coeffi cient is depicted at the top, and the
localization of those coeffi cients in twistor space is shown at the bottom.

helicity gluons. (Just as in Euclidean space, a pair of straight lines intersecting in two points in
twistor space is the same as a single line.) In the NMHV case shown in fig. 5(b), the simplest
nonvanishing box coefficients are generically those of the three-mass box integral, for which three
of the legs, A, B, and C, represent clusters of momenta from the scattering amplitude, and only
one, s, is an individual scattering momentum. These coefficients have a planar twistor structure,
consisting of three intersecting lines, and the leg ssits at one of the intersections [20, 27, 22]. For
the NNMHYV case in fig. 5(c), the four-mass box coefficients have the nonplanar ring structure
shown [22]. In general, as in the tree case, fig. 3, one-loop box coefficients are supported on
networks of lines, but the lines are joined into rings to match the loop topology. Similar structures
have been found for coefficients of integrals in gauge theories with .4~ < 4 supersymmetries [29].

5. What isatwistor string?

I have been remiss in titling this talk “Twistor String Theory and QCD,” without saying any-
thing yet about what twistor string theory is, or how it is related to the more phenomenological
developments just outlined. In fact, | won’t describe twistor string theory at any length, but | would
like to briefly contrast it with ordinary string theory, from the perspective of methods for computing
gauge theory amplitudes.

An ordinary string is an extended object which moves in space-time. Different physical vi-
brations of the string are associated with different particle states. The higher the harmonic, the
more massive the particle; indeed, there is an infinite tower of ultra-heavy particles, as well as a
set of massless ones. One of the massless particles is always the graviton. Because the one energy
scale in gravity is the Planck mass, M, =2 10%° GeV, this sets the scale for the ultra-heavy masses
(unless certain extra dimensions happen to have a large size), as shown in fig. 6(a). Also, the mass-
less spectrum can be relatively complicated — several gauge groups, matter fields transforming in
various ways, and so on.
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Figure 6: (a) Typica spectrum of particlesin ordinary string theory. (b) Typical spectrum in (topological)
twistor string theory.

In the early 1990s, this type of string theory was adapted by Bern and Kosower into a tool
to compute one-loop QCD amplitudes [30]. It worked pretty well. The first computations of the
helicity amplitudes for four-gluon scattering in QCD used this technique [30]. (The unpolarized
cross sections were computed earlier via more traditional methods [31].) The five-gluon helicity
amplitudes were also computed via the string-based method [32]. On the other hand, this string
theory was not optimized for QCD calculations. It did not possess all the symmetries of QCD. For
example, QCD is classically conformally invariant (independent of energy scale). But traditional
string theory depends on the scale Mp, as reflected in the mass spectrum in fig. 6(a). Related to
this fact, a fair amount of analysis was required to decouple the unwanted massive states from the
loop amplitudes (as well as the massless states not corresponding to QCD). The analysis would
have had to be redone to incorporate external quarks, for example. In the meantime it was found
that “abstracting the lessons” from string theory was often the most efficient way to proceed. The
efficiency of the string-based rules for amplitudes could be attributed to a background-field quanti-
zation of gauge theory [33] and a second-order formulation for fermions, for instance [34]. These
lessons could then be applied to amplitudes with external quarks, without having to develop the
full string-theoretic machinery [35].

In contrast, the twistor string theory invented by Witten [1] is a topological one, and the string
moves in twistor-space, not the usual space-time. “Topological” means that the energy of the string
only depends on topological information, so that very few of its degrees of freedom are dynamical.
As a result, it does not have a tower of massive states, only massless ones, as shown in fig. 6(b).
Twistor string theory is conformally invariant, like classical QCD. It makes much more manifest the
symmetries of classical QCD, which include not only conformal invariance, and the secret (%" = 4)
supersymmetry mentioned in section 2, but a full superconformal group containing them. So, from
the point of view of calculating QCD amplitudes, twistor string theory seems almost designed to
do the job.

On the other hand, twistor string theory is still not precisely QCD. It possesses all the 4" = 4
superpartners of the gluons, instead of quarks. It also contains gravitons, but not those of Einstein’s
theory of gravity; instead they belong to a non-unitary theory, conformal supergravity. Both of
these properties are not really an issue for computations of tree-level amplitudes, but they can play
havoc with a loop-level description. In fact, there is no satisfactory one-loop formulation of twistor
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string theory at present. Once again, however, from a computational point of view, abstracting the
lessons is often the best.

Even at tree level, such abstraction can be beneficial. Although the MHV n-gluon ampli-
tudes (2.2) could be evaluated directly from the twistor string [1], and the six-gluon non-MHV
amplitudes, such as eq. (2.14), were also produced in this way [36], the MHYV rules [12] have pro-
vided a much more efficient method for generic tree amplitudes. They originated at least in part
from abstracting the twistor structure which was found by studying existing QCD amplitudes. (One
could also say, however, that the MHV rules follow from a different, “disconnected”, prescription
for evaluating the relevant twistor-string contributions.)

6. On-shell recursive methods

Another process of abstraction and streamlining led, at the beginning of this year, to the on-
shell recursion relations of Britto, Cachazo, Feng and Witten [37, 38]. These relations are even
more efficient, and lead to more compact formulas, than the MHYV rules. Also, they can be proven
in a very simple way, using only Cauchy’s theorem and factorization properties. So it is very easy
to extend these relations to more general processes, and also to apply the same kinds of techniques
to the computation of one-loop amplitudes in QCD.

The path to the on-shell recursion relations was somewhat roundabout, proceeding through the
one-loop amplitudes in .4” = 4 super-Yang-Mills theory, whose box coefficients were sketched in
section 4. These amplitudes have infrared divergences, represented in dimensional regularization
as poles in € = (4 — D) /2. The residues of the poles have to be proportional to the corresponding
tree amplitude. This requirement gave new formulas for tree amplitudes, in terms of sums of box
coefficients [20, 22, 39], which were more compact than previously-known expressions. Using
generalized unitarity, these formulas could be reinterpreted as quadratic recursion relations [37]

The basic on-shell recursion relation for tree amplitudes reads [37, 38],

n-2 ;
AF(L2,...m=5 Y A‘kfiel(i,z,...,k,—R;Q)K'—ZAHSekH(R{{k,k+ 1,....,n—1,A). (6.1)
h=T1K=2 1k
It is depicted diagrammatically in fig. 7. The amplitude is represented as a sum of products of
lower-point amplitudes, evaluated on shell, but for complex, shifted values of the momenta (see
below). The helicity labels of the n external gluons have been omitted, but they are the same on
the left- and right-hand sides of eq. (6.1). For the relation to be valid, the helicities of gluons n and
1 can be (hy,h)) = (-1,1), (1,1), or (—1,-1), but not (1,—1). There are two sums. The first is
over the helicity h of an intermediate gluon propagating (downward) between the two amplitudes.
The second sum is over an integer k, which labels the different ways the set {1,2,...,n} can be
partitioned into two cyclicly-consecutive sets, each containing at least 3 elements, where labels 1
and n belong to different sets. A hat on top of a momentum label denotes that the corresponding
momentum is not that of the original n-point amplitude, but is shifted to a different value.

To describe the shifted momenta, first note that, from eq. (2.4), kH = ogd)\i“;\id is a massless
four-vector because of the antisymmetry of the spinor products,

K = £5,8, . (k)P0 (k)PP = 5 ATAPe, AOAP = (i) [ii] = 0. (6.2)
405/11



Twistor Sring Theory and QCD

Figure 7: Diagrammatic representation of an on-shell recursion relation for tree amplitudes.

It will continue to be massless even if one of the two spinors is shifted so that it is no longer the
complex conjugate of the other spinor, for example

K (Ow)aa = (&) (}H)a(;\i)av (6.3)

where ;\i is shifted away from A;.
The momentum shift in the ki term in eq. (6.1) can now be described as,

A — A = A +ZAn, A — Ay
An — An, Xn_)XnEXn_ZkX]J (64)
where X
K
Zo=— (6.5)
(n |K1,k‘1 )

This shift keeps k; = (A, +2An)A; and ky = An(An — ZA,) massless, as discussed above. It pre-
serves overall momentum conservation, because k T ky=A )\1 - AnAn = k, +kn. And the inter-
mediate gluon momentum, defined by Kl =Ky k+zk/\n)\1, is also massless (on shell), because

K2 = (Kyy+2AnAy)? = K2 +2(n"[Ky ,[17) = 0. (6.6)

The derivation of eq. (6.1) is very simple [38]. The momentum shift (6.4) is considered for
an arbitrary complex number z, instead of the discrete values z, in eq. (6.5). This shift defines an
analytic function of z, A" (2). It has poles in z whenever a collection of the shifted momenta,
corresponding to an intermediate state, can go on shell. For every allowed partition of {1,2,...,n}
into {1,2,...,k} U{k+1,...,n—1,n}, there is a unique value of z that accomplishes this, z,,
because Kf’k(zk) = 0 according to eg. (6.6). The desired amplitude is the value of Al'*¢(z) at z= 0.
Provided that Al®®(z) — 0 as z— oo, this value at z= 0 is determined by Cauchy’s theorem in terms
of the residues of A®(z) at z= z,. Using general factorization properties of tree amplitudes, the
k! residue evaluates to the product found in the k" term in eq. (6.1). The vanishing of Al'*¢(z) as
z— oo can be established directly from Feynman diagrams for (h,, h,) = (—1,1) [38]. For the other
two valid cases it can be shown using the “MHYV rules” [12], or by a recursive argument [40].

No knowledge of twistor space is needed to implement eq. (6.1). Its derivation is heuristically
related to twistor space, however, in that spinors, not vectors, play the fundamental role.
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(c)

Figure 8: On-shell recursive diagrams for AJ®(1",2+,3",47,57.67).

Off-shell recursive approaches to summing Feynman diagrams have a long history [11, 41]. In
the off-shell case, however, the auxiliary lower-point quantities are gauge-dependent. In on-shell
recursion relations, in contrast, they are precisely the desired physical, gauge-invariant, on-shell
scattering amplitudes, just with fewer partons. In short, trees are recycled into trees.

6.1 A simpleapplication: AZ®(1",2% 3" 4~ ,57,67)

Let us now work through a simple application of eq. (6.1) [37]. The first non-MHV n-gluon
amplitudes (taking into account parity) are those with six gluons, three of positive helicity and three
negative. There are three cyclicly-inequivalent helicity configurations: Af®¢(1",2*,3%,47 57 ,67),
Ale(1+,27,37,47,57.67), and Al*¢(1%,27,3%,47,5%,67). The last of these amplitudes is re-
lated to the first two a “dual Ward identity” (group theory relation) [7]. Here we apply eq. (6.1)
to Af®¢(17,2+,37,47,57,67). Instead of 220 Feynman diagrams (including all color-orderings),
there are just three potential on-shell recursive diagrams, shown in fig. 8. Diagrams of the form
of fig. 8(a) and fig. 8(c), but with a reversed helicity assignment to the intermediate gluon, vanish
because AT (+,+,+) = AJ®(—,—,—) = 0. Figure 8(b), and the corresponding diagram with a
reversed intermediate helicity, both vanish using eq. (2.1). Finally, diagram (c) is related to diagram
(a) by the “flip” symmetry (1 < 6,2 < 5,3 < 4) (plus spinor conjugation).

So, remarkably, there is only one independent diagram, fig. 8(a). Its value is given by the
product of two shifted MHV amplitudes, each parity-conjugated with respect to eq. (2.2),

D@ — Atgree(i+’2+’_Kl—z)K_ZAgee(Kfz’3+’4f’Sf’éf) (6.7)
i i’ K, ,3° _ (67| (1+2)[37)°

123 ‘
S5 2Ky ] [K; 1] [34][45] [56] [6K, 5] (61)(12)[34][45]s5;, (27| (6+1)[57)

To get the contribution D(©), we add the image of D® under the permutation (1 < 6,2 < 5,3 < 4),
combined with spinor conjugation, () < []. The full amplitude is

, (6 (1 +2)3°)°
(61) (12) [34] [45] 551, (2 (6 + 1)157)
. (471(5+6)1)°
(23) (34) 561 [61] 5551 (2 [(6+1)57)
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Let’s compare this representation of the amplitude with the previous one, eq. (2.14), found using
Feynman diagrams. The second expression is shorter. (Here the difference in length is minimal; it
becomes more striking for seven gluons [10, 20].) It also makes manifest the square-root collinear
behavior in all channels. For example, in the collinear limit where k; becomes parallel to k,,
eq. (6.8) has the correct 1/ (34) and 1/ [34] behavior manifest; in eq. (2.14), cancellations between
the three terms, each of which behaves like 1/s,,, are required to obtain the proper behavior. On the
other hand, eq. (6.8) contains a spurious singularity, because (2~|(6+1)|5~) vanishes when ks +k;
happens to be a linear combination of k, and ks (use the massless Dirac equation to see this). The
amplitude is perfectly finite in this region, but each term diverges. In numerically implementing
eg. (6.8), one should take care in this region.

7. One-loop amplitudes

Although the MHYV and on-shell recursive rules are quite efficient for the analytical computa-
tion of many types of tree amplitudes, and shed a lot of light on their structure, in the end all one
really wants are numerical values. Quite efficient numerical computer programs have already been
developed over the years, based on off-shell recursive methods [42], which can evaluate QCD tree
amplitudes with of order 10 external partons in a reasonable amount of time. In contrast, the com-
plete set of one-loop helicity amplitudes is not known for any pure QCD process with greater than
five external legs. There are similar bottlenecks for processes in which a few electroweak vector
bosons are produced in addition to multiple QCD partons. So it is of great interest to see whether
new methods can be developed for one-loop QCD amplitudes.

The method used to prove the tree-level on-shell recursion relations [38] — shifting a pair
of momenta by a complex amount, while keeping them on shell — is particularly promising in
this regard, because it efficiently incorporates the known factorization of amplitudes onto collinear
and multi-particle poles. Indeed, the same techniques can be adopted at one loop, in order to
determine the rational (non-logarithmic) parts of amplitudes, once the parts containing branch cuts
(logarithms, polylogarithms, etc.) have been determined by other means — for example, using
unitarity, as mentioned in section 4. Recently, all the one-loop n-gluon helicity amplitudes in QCD
with up to two (adjacent) negative-helicity gluons, and an arbitrary number of positive helicity
ones, have been produced (or reproduced) in this way [43, 44]. The amplitudes having n_ =
0 or 1 are quite special, because they vanish at tree-level (eq. (2.1)). They have no infrared or
ultraviolet divergences, and there are no branch cuts at all. Also, they were known from previous
work [45, 41]. They have a purely recursive representation, whose construction involved a few
assumptions, which could be cross-checked by comparing to the previous results [43].

The series of amplitudes AL~190P (1~ 2= 3+ 4+ .. n*), with two adjacent negative helicities,
have branch cuts as well as infrared and ultraviolet divergences. The branch cuts were determined
a decade ago, using unitarity [46]. The rational parts can now be constructed recursively [44]. In
addition to a set of recursive diagrams, much like the tree-level formula (6.1), there are certain
“overlap” diagrams, which perform bookkeeping with respect to certain rational-function terms
which naturally accompany the logarithmic terms. There are relatively few diagrams to evaluate.
For the rational part of Aé"°°p(1‘,2‘,3+,4+,5*,6*), for example, there are four nonvanishing
recursive diagrams and three nonvanishing overlap diagrams. The evaluation of each diagram is
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completely algebraic; no loop integrations are required. In contrast, the number of one-loop 6-
gluon Feynman diagrams in QCD is 10,680, each of which requires a loop integration.

8. Conclusions

Several new methods for computing gauge theory scattering amplitudes relevant for LHC
physics have been developed over the last year or two, with a strong stimulation from twistor
string theory. After some abstraction and streamlining, however, many of these methods actually
bear a close resemblance to the bootstrap program developed in the 1960s. In a bootstrap, scat-
tering amplitudes are reconstructed directly from their analytic properties, without the need for a
Lagrangian [47, 25]. While this program has proven difficult, if not impossible, to carry out in
full nonperturbative generality in a strongly-coupled four-dimensional field theory, in the context
of perturbation theory much more information is available to assist it. The (factorization) poles of
amplitudes are dictated by amplitudes with fewer legs, while the (unitarity) cuts are dictated by
products of amplitudes with fewer loops. Tree-level on-shell recursion relations, for example, are a
very convenient way of systematically incorporating the factorization data. The use of analyticity
fell somewhat out of favor in the the 1970s, with the rise of a Lagrangian (QCD) for the strong
interactions. Ironically, it now proves useful to resurrect analyticity, and a perturbative bootstrap,
as a tool for computing complicated QCD amplitudes — for which a direct Lagrangian approach,
that is, using Feynman rules, can be very cumbersome.

To date, the “practical” spinoffs from twistor-inspired methods have been primarily for tree
amplitudes (which can also be obtained by other, numerical methods), and for loop amplitudes in
supersymmetric theories. But recently, new one-loop helicity amplitudes in full QCD have begun
to fall to these methods, suggesting that soon there will be direct phenomenological applications. In
addition, the recent rapid progress in developing new computational approaches along these lines
is very likely to continue.
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