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1. Introduction

In QCD with increasing temperatures (T) we expect a transition at someT = Tc. The domi-
nant degrees of freedom are hadrons in the low temperature phase and colored objects in the high
temperature phase. Present lattice results suggest a cross-over for vanishing chemical potential and
a critical point at some non-vanishing T and chemical potential (µ).

Since we are mostly interested in the physics aroundTc, non-perturbative methods are neces-
sary among which lattice QCD is the most systematic one. There are at least two serious difficulties
with lattice simulations. The first one is connected to the lightness of the quark masses. The cost of
computations increases strongly as the quark masses decrease, therefore most lattice results were
obtained with unphysically large quark masses. The second difficulty is connected to the contin-
uum limit. Calculations are always performed at a finite lattice spacing (a). In order to get physical
results, we have to take thea→ 0 limit. Since e.g. for the equation of state (EoS) the computational
costs scale asa−13 it is not surprising that up to very recently most results were obtained only at
one set of lattice spacings.

The situation is much easier in the case of the pure gauge theory. The first problem does not
exist since the quark masses are infinite. Due to this situation there are continuum extrapolated
results e.g. for the equation of state, both with unimprovedand improved lattice actions and they
show nice agreement [1, 2, 3].

For a long time it was believed that no physical answer can be given to questions with non-
vanishing baryonic densities. The reason for that is the infamous sign problem, which spoils any
Monte-Carlo method based on importance sampling. Recently, new techniques were developed ,
which are able to cover small to moderate baryonic chemical potentials at non-vanishing tempera-
tures (chemical potential is used to set the baryonic density).

In this talk recent results on non-vanishing densities are presented.

2. Lattice formulation, nonvanishing temperatures and densities

Thermodynamical quantities can be obtained from the partition function which can be given
by a Euclidean path-integral:

Z =
∫

DUDΨ̄DΨexp[−SE(U,Ψ̄,Ψ)] (2.1)

whereU andΨ̄,Ψ are the gauge and fermionic fields andSE is the Euclidean action. The lattice
regularization of this action is not unique. There are several possibilities to use improved actions
which have the same continuum limit as the unimproved ones. The advantage of improved actions
is that the discretization errors are reduced.

UsuallySE can be split up asSE = Sg+Sf whereSg is the gauge action containing only the self
interactions of the gauge fields andSf is the fermionic part. The gauge action has one parameter, the
β gauge coupling, while the parameters ofSf are themq quark masses andµq chemical potentials.
For the fermionic action the two most widely used discretization types are the Wilson and staggered
fermions.
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For the actual calculations finite lattice sizes ofN3
sNt are used. The physical volume and the

temperature are related to the lattice extensions as:

V = (Nsa)3, T =
1

Nta
. (2.2)

Therefore lattices withNt ≫ Ns are referred to as zero temperature lattices while the ones with
Nt < Ns are finite temperature lattices. Since the gauge couplingβ has the largest influence on the
lattice spacing, it essentially determines the temperature (increasingβ increases T).

Though QCD at finite chemical potential (µ , which as already mentioned, is used to set non-
vanishing baryonic density) can be formulated on the lattice [7], standard Monte-Carlo techniques
can not be used atµ 6= 0. The reason is that for non-vanishing realµ the functional measure –thus,
the determinant of the Euclidean Dirac operator– is complex. This fact spoils any Monte-Carlo
technique based on importance sampling. Several suggestions were studied earlier to solve the
problem. Unfortunately, none of them was able to give physical answers for non-vanishing den-
sities. About three years ago new techniques appeared, withwhich moderate chemical potentials
could be reached on the lattice.

One of the most popular ideas [4, 5] was to produce an ensembleof QCD configurations at
µ=0 and at the corresponding transition temperatureTc (or at any other physically motivated point
for which importance sampling works). Then one determined the Boltzmann weights [8] of these
configurations atµ 6= 0 and atT lowered to the transition temperatures at this non-vanishing µ . An
ensemble of configurations at a transition point was reweighted to an ensemble of configurations at
another transition point.

3. Results with physical quark masses, critical endpoint on the µ-T plane

A critical point is expected in QCD on the temperature versusbaryonic chemical potential
plane. Our goal in this section is to determine the location of this critical point.

The lattice action we used was the unimproved staggered action with physical quark masses
(it means, that the pion and kaon masses take approximately their physical values).

The partition function of lattice QCD withnf degenerate staggered quarks is given by the
functional integral of the gauge actionSg at gauge couplingβ over the link variablesU , weighted
by the determinant of the quark matrixM, which can be rewritten [4] as

Z(β ,m,µ) =

∫

DU exp[−Sg(β ,U)][detM(m,µ ,U)]nf /4

=

∫

DU exp[−Sg(βw,U)][detM(mw,µw,U)]nf /4 (3.1)
{

exp[−Sg(β ,U)+Sb(βw,U)]

[

detM(m,µ ,U)

detM(mw,µw,U)

]nf /4
}

,

wherem is the quark mass,µ is the quark chemical potential andnf is the number of flavors.
For non-degenerate masses one uses simply the product of several quark matrix determinants on
the 1/4-th power. Standard importance sampling works and can be used to collect an ensemble
of configurations atmw, βw and µw (with e.g. Re(µw)=0 or non-vanishing isospin chemical po-
tential). It means we treat the terms in the curly bracket as an observable –which is measured on
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Figure 1: Im(β ∞
0 ) as a function of the chemical potential.

each independent configuration– and the rest as the measure.By simultaneously changing several
parameters e.g.β andµ one can ensure that even the mismatched measure atβw andµw samples
the regions where the original integrand withβ andµ is large. In practice the determinant is eval-
uated at someµ and a Ferrenberg-Swendsen reweighting [8] is performed forthe gauge coupling
β . The fractional power in eq. (3.1) can be taken by using the fact that atµ = µw the ratio of the
determinants is 1 and the ratio is a continuous function of the chemical potential. The details of the
determinant calculation can be found in Ref. [5].

In the following we keepµ real and look for the zeros of the partition function on the complex
β plane. These are the Lee-Yang zeros [11]. Their V→ ∞ behavior tells the difference between
a crossover and a first order phase transition. At a first orderphase transition the free energy
∝ logZ(β ) is non-analytic. Clearly, a phase transition can appear only in the V→ ∞ limit, but
not in a finiteV. Nevertheless, the partition function has Lee-Yang zeros at finite V. These are at
“unphysical” complex values of the parameters, in our case at complexβ -s. For a system with
a first order phase transition these zeros approach the real axis in the V→ ∞ limit (the detailed
analysis suggests a 1/V scaling). This V→ ∞ limit generates the non-analyticity of the free energy.
For a system with crossover the free energy is analytic, thusthe zeros do not approach the real axis
in the V→ ∞ limit.

Figure 1 shows Im(β ∞
0 ) as a function ofµ enlarged around the endpointµend. The picture is

simple and reflects the physical expectations. For smallµ-s the extrapolated Im(β ∞
0 ) is inconsis-

tent with a vanishing value, and the prediction is a crossover. Increasingµ the value of Im(β ∞
0 )

decreases, thus the transition becomes consistent with a first order phase transition.

Setting the scale leads to the final results of the analysis. As we already discussed, the quark
masses, used to determine the endpoint, correspond approximately to their physical values. The
pion to rho mass ratio, extrapolated to ourT 6= 0 parameters, is 0.188(2) (its physical value is
0.179), whereas the pion to K mass ratio in the same limit is 0.267(1) (its physical value is 0.277).
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Figure 2: The phase diagram in physical units. Dotted line illustrates the crossover, solid line the first order
phase transition. The small square shows the endpoint. The depicted errors originate from the reweighting
procedure. Note, that an overall additional error of 1.3% comes from the error of the scale determination at
T=0. Combining the two sources of uncertainties one obtainsTE = 162±2 MeV andµE = 360±40 MeV.

Figure 2 shows the phase diagram in physical units, thusT as a function ofµB, the baryonic
chemical potential (which is three times larger then the quark chemical potential). Atµ=0 the
transition between the hadronic and quark-gluon plasma phases is a cross-over. As we increase the
chemical potential the transition temperature decreases,but the transition itself remains a cross-
over. At a given endpoint chemical potential the transitionis a second order one. For even larger
chemical potentials the transition temperature further decreases and the transition becomes a first
order one.

The curvature of the crossover line separating the QGP and the hadronic phases is given by
T/Tc = 1−Cµ2

B/T2
c with C=0.0032(1).

The endpoint is atTE = 162±2 MeV, µE = 360±40 MeV.

4. Equation of state at non-vanishing T and µ

The equation of state (EOS) atµ 6=0 is [9] essential to describe the quark gluon plasma (QGP)
formation at heavy ion collider experiments.

We use 4·N3
s lattices atT 6=0 with Ns=8,10,12 for reweighting and we extrapolate to V→∞

using the available volumes (V). At T=0 lattices of 24·143 are taken for vacuum subtraction and to
connect lattice parameters to physical quantities. 14 differentβ values are used, which correspond
to T/Tc = 0.8, . . . ,3. Our T=0 simulations providedR0 andσ . The lattice spacing atTc is ≈0.25–
0.30 fm. We use 2+1 flavours of dynamical staggered quarks. While varying β (thus T) we keep
the physical quark masses approx. constant (the pion to rho mass ratio ismπ/mρ ≈0.66).

The determination of the equation of state atµ 6=0 needs several observables,O, atµ 6=0. This
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weight lines
best 

quark−gluon
plasma

hadronic phase transition line

β

µ

Figure 3: The best weight lines on theµ–β plane. In the middle we indicate the transition line. Its first
dotted part is the crossover region. The blob represents thecritical endpoint, after which the transition is of
first order. The integration paths used to calculatep are shown by the arrows along theβ axis and the best
weight lines.

Figure 4: p normalised byT4 as a function ofT/Tc at µ = 0 (to help the continuum interpretation the raw
lattice result is multiplied bycµ=0.446).

Figure 5: ∆p = p(µ 6= 0,T)− p(µ = 0,T) normalised byT4 as a function ofT/Tc for µB=100, 210, 330,
410 MeV and 530 MeV (from bottom to top). To help the continuuminterpretation the raw lattice result is
multiplied bycµ=0.446.
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Figure 6: nB/T3 versusT/Tc for the sameµB values as in Fig. 3 (from bottom to top). (to help the
continuum interpretation the raw lattice result is multiplied by cµ=0.446). As a reference value the line
starting in the left upper corner indicates the nuclear density.

is obtained by using the weights of eq. (3.1)

O(β ,µ ,m) =
∑{w(β ,µ ,m,U)}O(β ,µ ,m,U)

∑{w(β ,µ ,m,U)}
. (4.1)

p can be obtained from the partition function asp=T · ∂ logZ/∂V which can be written as
p=(T/V)· logZ for large homogeneous systems. On the lattice we can only determine the derivatives
of logZ with respect to the parameters of the action (β ,m,µ). Using the notation〈O(β ,µ ,m)〉=
O(β ,µ ,m)T 6=0−O(β ,µ = 0,m)T=0. p can be written as an integral:

p
T4 =

1
T3V

∫

d(β ,m,µ) (4.2)
(〈

∂ (logZ)

∂β

〉

,

〈

∂ (logZ)

∂m

〉

,

〈

∂ (logZ)

∂ µ

〉)

.

The integral is by definition independent of the integrationpath. The chosen integration paths are
shown in Fig 3.

The energy density can be written asε = (T2/V) ·∂ (logZ)/∂T +(µT/V) ·∂ (logZ)/∂ µ . By
changing the lattice spacingT andV are simultaneously varied. The special combinationε −3p
contains only derivatives with respect toa andµ :

ε −3p
T4 = −

a
T3V

∂ log(Z)

∂a

∣

∣

∣

∣

µ
+

µ
T3V

∂ (logZ)

∂ µ

∣

∣

∣

∣

a
. (4.3)

The quark number density isn = (T/V) · ∂ log(Z)/∂ µ which can be measured directly or
obtained fromp (baryon density isnB=n/3 and baryonic chemical potential isµB=3µ).

We present direct lattice results onp(µ = 0,T), ∆p(µ ,T) = p(µ 6= 0,T)− p(µ = 0,T) and
nB(µ ,T). Additional overall factors were used to help the phenomenological interpretation.

Fig. 4 showsp at µ=0. In Fig. 5 we show∆p/T4 for different µ values. Fig. 6 gives the
baryonic density as a function ofT/Tc for different µ-s. The densities can exceed the nuclear
density by up to an order of magnitude.
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5. Summary

We discussed the overlap-improving multi-parameter reweighting technique, in order to cal-
culate physical observables at non-vanishing temperatures and chemical potentials. A critical point
is expected in QCD on the temperature versus baryonic chemical potential plane. Using the above
lattice method forµ 6=0 we studied dynamical QCD withnf =2+1 staggered quarks of physical
masses onLt = 4 lattices. We used physical quark masses in this analysis. Our result for the crit-
ical point isTE = 162± 2 MeV andµE = 360± 40 MeV. The continuum limit extrapolation is
missing in this case.

The same overlap-improving multi-parameter reweighting technique can be used to determine
the equation of state at non-vanishing chemical potentials. Results were presented for the pres-
sure and quark number density as a function of the temperature for different chemical potentials.
Note, that the quark mass was in this case larger than its physical value. The continuum limit
extrapolation is missing also in this case.

The details of the presented results can be found in [5, 10].
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