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1. Introduction

In QCD with increasing temperatureg)(we expect a transition at sonfe= T.. The domi-
nant degrees of freedom are hadrons in the low temperatage@nd colored objects in the high
temperature phase. Present lattice results suggest aou@sr vanishing chemical potential and
a critical point at some non-vanishing T and chemical padéft).

Since we are mostly interested in the physics arolipdion-perturbative methods are neces-
sary among which lattice QCD is the most systematic one. €Taer at least two serious difficulties
with lattice simulations. The first one is connected to thhtiess of the quark masses. The cost of
computations increases strongly as the quark masses gectkarefore most lattice results were
obtained with unphysically large quark masses. The secdficutty is connected to the contin-
uum limit. Calculations are always performed at a finitddatspacingd). In order to get physical
results, we have to take tlae— 0 limit. Since e.g. for the equation of state (EoS) the comipornal
costs scale aa 13 it is not surprising that up to very recently most resultsevebtained only at
one set of lattice spacings.

The situation is much easier in the case of the pure gaugeyth€be first problem does not
exist since the quark masses are infinite. Due to this sttuidtiere are continuum extrapolated
results e.g. for the equation of state, both with unimprosed improved lattice actions and they
show nice agreement [1, 2, 3].

For a long time it was believed that no physical answer caniengo questions with non-
vanishing baryonic densities. The reason for that is thenimfus sign problem, which spoils any
Monte-Carlo method based on importance sampling. Recgerdly techniques were developed ,
which are able to cover small to moderate baryonic chemiat@rgials at non-vanishing tempera-
tures (chemical potential is used to set the baryonic dgnsit

In this talk recent results on non-vanishing densities azegnted.

2. Lattice formulation, nonvanishing temper atures and densities

Thermodynamical quantities can be obtained from the partfunction which can be given
by a Euclidean path-integral:

z— / U PP IWexp—S (U, P, W) 2.1)

whereU and ll_J, WY are the gauge and fermionic fields aBdis the Euclidean action. The lattice
regularization of this action is not unique. There are saveossibilities to use improved actions
which have the same continuum limit as the unimproved onks.allvantage of improved actions
is that the discretization errors are reduced.

Usually & can be split up aSe = §+ St whereS; is the gauge action containing only the self
interactions of the gauge fields a8dis the fermionic part. The gauge action has one parameter, th
B gauge coupling, while the parametersSpfare themy quark masses ana, chemical potentials.
For the fermionic action the two most widely used discreiratypes are the Wilson and staggered
fermions.
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For the actual calculations finite lattice sizesNg\; are used. The physical volume and the
temperature are related to the lattice extensions as:

1
= Na
Therefore lattices with\; > Ng are referred to as zero temperature lattices while the orils w
N: < Ns are finite temperature lattices. Since the gauge couglihgs the largest influence on the
lattice spacing, it essentially determines the tempegdincreasing3 increases T).

Though QCD at finite chemical potentiglk,(which as already mentioned, is used to set non-
vanishing baryonic density) can be formulated on the kffr¢, standard Monte-Carlo techniques
can not be used at # 0. The reason is that for non-vanishing rgahe functional measure —thus,
the determinant of the Euclidean Dirac operator— is complekis fact spoils any Monte-Carlo
technique based on importance sampling. Several suggestiere studied earlier to solve the
problem. Unfortunately, none of them was able to give plalsimswers for non-vanishing den-
sities. About three years ago new techniques appearedwhitth moderate chemical potentials
could be reached on the lattice.

One of the most popular ideas [4, 5] was to produce an enseohlfCD configurations at
1=0 and at the corresponding transition temperalyr@r at any other physically motivated point
for which importance sampling works). Then one determiredBoltzmann weights [8] of these
configurations att # 0 and afT lowered to the transition temperatures at this non-vanishi An
ensemble of configurations at a transition point was rewedjto an ensemble of configurations at
another transition point.

V=(Na?3 T (2.2)

3. Resultswith physical quark masses, critical endpoint on the u-T plane

A critical point is expected in QCD on the temperature veisaigyonic chemical potential
plane. Our goal in this section is to determine the locatiothis critical point.

The lattice action we used was the unimproved staggerednawith physical quark masses
(it means, that the pion and kaon masses take approximaghyphysical values).

The partition function of lattice QCD witlms degenerate staggered quarks is given by the
functional integral of the gauge acti& at gauge coupling over the link variable$), weighted
by the determinant of the quark matih4, which can be rewritten [4] as

Z(Ba m?“) = / U eXp[—Sg(B,U)][detM(m,u,U)]”fM

= [ U expi—(Bu. )] [detM(m. . U @Y
ng /4
{exp[—sgw,u>+so<m,u>] Eerie }

wherem is the quark massy is the quark chemical potential amg is the number of flavors.

For non-degenerate masses one uses simply the producteslkquark matrix determinants on
the 1/4-th power. Standard importance sampling works and can ée tscollect an ensemble
of configurations am,, By and L, (with e.g. Ref,)=0 or non-vanishing isospin chemical po-
tential). It means we treat the terms in the curly bracketrastservable —which is measured on
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Figurel: Im(B3’) as a function of the chemical potential.

each independent configuration— and the rest as the me&usimultaneously changing several
parameters e.g3 and u one can ensure that even the mismatched measygatd i, samples
the regions where the original integrand witfand i is large. In practice the determinant is eval-
uated at som@ and a Ferrenberg-Swendsen reweighting [8] is performethiogauge coupling
B. The fractional power in eq. (3.1) can be taken by using tbetfat atu = u,, the ratio of the
determinants is 1 and the ratio is a continuous function®@ttiemical potential. The details of the
determinant calculation can be found in Ref. [5].

In the following we keegu real and look for the zeros of the partition function on thenpéex
B plane. These are the Lee-Yang zeros [11]. Theis % behavior tells the difference between
a crossover and a first order phase transition. At a first gpllase transition the free energy
OlogZ(B) is non-analytic. Clearly, a phase transition can appeay onthe V— o limit, but
not in a finiteV. Nevertheless, the partition function has Lee-Yang zetdmmige V. These are at
“unphysical” complex values of the parameters, in our caseomplex3-s. For a system with
a first order phase transition these zeros approach the xsainathe V— oo limit (the detailed
analysis suggests g\ scaling). This \\- o limit generates the non-analyticity of the free energy.
For a system with crossover the free energy is analytic, ttheizeros do not approach the real axis
in the V— oo limit.

Figure 1 shows Inf§y’) as a function ofu enlarged around the endpoingnq. The picture is
simple and reflects the physical expectations. For spallthe extrapolated Infg’) is inconsis-
tent with a vanishing value, and the prediction is a crossokereasingu the value of Img’)
decreases, thus the transition becomes consistent witbt arfiter phase transition.

Setting the scale leads to the final results of the analyssswéalready discussed, the quark
masses, used to determine the endpoint, correspond apteky to their physical values. The
pion to rho mass ratio, extrapolated to dur£ O parameters, is 0.188(2) (its physical value is
0.179), whereas the pion to K mass ratio in the same limita6 1) (its physical value is 0.277).
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Figure2: The phase diagram in physical units. Dotted line illussake crossover, solid line the first order
phase transition. The small square shows the endpoint. &pietdd errors originate from the reweighting
procedure. Note, that an overall additional error of 1.3%hes from the error of the scale determination at
T=0. Combining the two sources of uncertainties one obfgins 162+ 2 MeV andug = 360+ 40 MeV.

Figure 2 shows the phase diagram in physical units, Thas a function ofug, the baryonic
chemical potential (which is three times larger then therkjehemical potential). Au=0 the
transition between the hadronic and quark-gluon plasmagshia a cross-over. As we increase the
chemical potential the transition temperature decredsgsthe transition itself remains a cross-
over. At a given endpoint chemical potential the transii®a second order one. For even larger
chemical potentials the transition temperature furtherekeses and the transition becomes a first
order one.

The curvature of the crossover line separating the QGP antialronic phases is given by
T/Tc=1—CuZ/T2 with C=0.0032(1).

The endpoint is alg = 162+ 2 MeV, ug = 360+ 40 MeV.

4. Equation of state at non-vanishing T and u

The equation of state (EOS) @t£0 is [9] essential to describe the quark gluon plasma (QGP)
formation at heavy ion collider experiments.

We use 4N lattices atT #£0 with Ns=8,10,12 for reweighting and we extrapolate to-
using the available volume¥). At T=0 lattices of 24143 are taken for vacuum subtraction and to
connect lattice parameters to physical quantities. 14wifit3 values are used, which correspond
toT/T. =0.8,...,3. Our T=0 simulations provideRy ando. The lattice spacing & is ~0.25—
0.30 fm. We use 2+1 flavours of dynamical staggered quarksleWarying 8 (thus T) we keep
the physical quark masses approx. constant (the pion to &ss natio isn;/m, ~0.66).

The determination of the equation of statgiat0 needs several observabl€s,at u=£0. This
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Figure 3: The best weight lines on the—f plane. In the middle we indicate the transition line. ltstfirs
dotted part is the crossover region. The blob representxiti@al endpoint, after which the transition is of
first order. The integration paths used to calcufate shown by the arrows along tfBeaxis and the best
weight lines.
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Figure4: pnormalised byT“ as a function off /T; at u = O (to help the continuum interpretation the raw
lattice result is multiplied by,,=0.446).
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Figure5: Ap=p(u #0,T)— p(u=0,T) normalised byT* as a function off /T for ug=100, 210, 330,
410 MeV and 530 MeV (from bottom to top). To help the continuiaterpretation the raw lattice result is
multiplied byc,=0.446.
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Figure 6. ng/T3 versusT /T, for the sameug values as in Fig. 3 (from bottom to top). (to help the
continuum interpretation the raw lattice result is mulggl by c,=0.446). As a reference value the line
starting in the left upper corner indicates the nuclear tigns

is obtained by using the weights of eq. (3.1)

raY X{W(Bvl-I)va)}o(B?uvm)U)
o(B,u,m) = . 4.1
p can be obtained from the partition function psT - dlogZ/dV which can be written as
p=(T/V)-logZ for large homogeneous systems. On the lattice we can ordyrdite the derivatives
of logZ with respect to the parameters of the actifinng, 1). Using the notatiofO(3, u,m))=

O(B, ;M1 — O(B, 4 = 0,m);_q. p can be written as an integral:

P = [demuw 4.2)

(52 22 o32))

The integral is by definition independent of the integratiath. The chosen integration paths are
shown in Fig 3.

The energy density can be writtengs- (T?/V)-9(logZ)/dT + (uT/V)-d(logZ)/du. By
changing the lattice spacing andV are simultaneously varied. The special combinaten3p
contains only derivatives with respecta@and u:

e-3p_ a dlog(Z) u d(logz)
T4 TV da |, TV du

(4.3)

a

The quark number density is= (T /V)-dlog(Z)/du which can be measured directly or
obtained fromp (baryon density isig=n/3 and baryonic chemical potential ig=3u).

We present direct lattice results @iy =0,T), Ap(u,T) = p(u #0,T)—p(u =0,T) and
ng(u, T). Additional overall factors were used to help the phenortagical interpretation.

Fig. 4 showsp at u=0. In Fig. 5 we showAp/T* for different u values. Fig. 6 gives the
baryonic density as a function df/T; for different u-s. The densities can exceed the nuclear
density by up to an order of magnitude.
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5. Summary

We discussed the overlap-improving multi-parameter rghteig technique, in order to cal-
culate physical observables at non-vanishing tempeataurd chemical potentials. A critical point
is expected in QCD on the temperature versus baryonic claépatential plane. Using the above
lattice method foru #£0 we studied dynamical QCD with;=2+1 staggered quarks of physical
masses olh; = 4 lattices. We used physical quark masses in this analysisré3ult for the crit-
ical point isTg = 162+ 2 MeV andug = 360+ 40 MeV. The continuum limit extrapolation is
missing in this case.

The same overlap-improving multi-parameter reweighteahhique can be used to determine
the equation of state at non-vanishing chemical potentiRissults were presented for the pres-
sure and quark number density as a function of the temper&udifferent chemical potentials.
Note, that the quark mass was in this case larger than itsqahyslue. The continuum limit
extrapolation is missing also in this case.

The details of the presented results can be found in [5, 10].
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