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We discuss some low energy properties of color-flavor locked(CFL) superconductors. First, we

study how an external magnetic field affects their Goldstonephysics in the chiral limit, stressing

that there is a long-range component of the field that penetrates the superconductor. We note that

the most remarkable effect of the applied field is giving a mass to the charged pions and kaons. By

estimating this effect, we see that for valuesẽB̃∼ 2 fπ ∆, where∆ is the quark gap, andfπ the pion

decay constant, the charged Goldstone bosons become so heavy, that they turn out to be unstable.

The symmetry breaking pattern is then changed, agreeing with that of the magnetic color-flavor

locked (MCFL) phase, recently proposed in hep-ph/0503162.Finally, we discuss the physics of

the superfluid phonon of the CFL phase, compare it with that ofthe phonon of a Bose-Einstein

condensate, and discuss transport phenomena at low temperature. Astrophysical implications of

all the above low energy properties are also commented.
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Low energy properties of color-flavor locked superconductors Cristina Manuel

1. Introduction

In this talk I will touch two different aspects of the low energy physics of thecolor-flavor
locked phase [1]. The first part is a continuation of Vivian de la Incera’s seminar, on the subject
of how a strong magnetic field influences color superconductivity. It is based on the joint collab-
oration with Efrain Ferrer and Vivian de la Incera [2]. In the second part, I will discuss transport
phenomena at low temperature of the CFL and BEC superfluids, stressing similarities and differ-
ences. This is work done in collaboration with Antonio Dobado and Felipe Llanes-Estrada [3],
and an on-going collaboration with Arnau Rios. Before entering into detaileddiscussions, let me
explain you why those are interesting physical problems.

Studying the influence of a magnetic field on quark matter is not only an academicquestion.
We believe that quark matter may occur in compact stars, either in the core of neutron stars, or
in the form of quark stars. The real fact is that the highest magnetic fieldsin the Universe occur
precisely in compact stars. Pulsars are believed to be neutron stars, andthey stand magnetic fields
in their surfaces in the rangeB∼ 1012−1014 G. Magnetars are a different kind of compact stars that
stand higher magnetic fields,B∼ 1014−1015 G, while the valueB∼ 1016 G is yet not discarded.
There is however un upper theoretical limit to the magnetic field that a compact star may stand,
arising after comparing the magnetic and gravitational energy, given as [4]

Bmax∼ 1.4×1018
(

M
M⊙

)(
10km

R

)2

G (1.1)

whereM andR refer to the mass and radius of the star, respectively, andM⊙ is the solar mass. If
self-bound quark stars exist, this upper limit may go higher, though.

As discovered in [2], not only an applied magnetic field to the superconductor affects the
quark gaps, thus affecting the equation of state of CFL quark matter. It also affects its low energy
properties, as we will further discuss.

On the other hand, let me also insist on the relevance of transport phenomena in astrophysics.
While with the equation of state one can determine the mass and radius of a star, with the transport
coefficients one can study its cooling, and its vibrational and rotational properties. Thus, they are
essential for detecting signatures of quark matter in compact stars in any ofits possible phases.

It has been established that the viscosities put stringent tests to astrophysical models for very
rapidly rotating stars, such as for millisecond pulsars. This is based on the existence of r(otational)-
mode instabilities in all relativistic rotating stars [5], which are only suppressed by sufficiently
large viscosities. So the viscosities will allow one to discard unrealistic models for millisecond
pulsars. There has not been many efforts in the literature to study transport phenomena in color
superconducting quark matter, with very few exceptions [6, 7, 8, 3].

2. Effects of a magnetic field in the low energy physics of the CFL phase

For all the considerations to follow, we will neglect the effect of quark masses. In the absence
of a magnetic field, three-flavor massless quark matter at high baryonic density is in the CFL phase
[1]. Then the diquark condensates lock the color and flavor transformations, breaking both. The
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Low energy properties of color-flavor locked superconductors Cristina Manuel

symmetry breaking pattern in the CFL phase is

SU(3)C×SU(3)L ×SU(3)R×U(1)B → SU(3)C+L+R . (2.1)

There are only nine Goldstone bosons that survive to the Anderson-Higgs mechanism. One is a
singlet, scalar mode, associated to the breaking of the baryonic symmetry, and the remaining octet
is associated to the axialSU(3)A group, just like the octet of mesons in vacuum. At sufficiently high
density, the anomaly is suppressed, and then one can as well consider thespontaneous breaking of
an approximatedU(1)A symmetry, and an additional pseudo Goldstone boson. We will ignore this
effect, though.

Once electromagnetic effects are considered, the flavor symmetries of QCDare reduced, as
only the d and s quarks have equal electromagnetic charges,q = −e/3, while theu quark has
electromagnetic charge,q = 2e/3. However, because the electromagnetic structure constantαe.m.

is so small, this effect is considered to be really tiny, a small perturbation, andone talks about
approximated good flavor symmetries.

In the CFL phase there is a linear combination of the photon and a gluon that remains massless.
The CFL diquarks are invariant under ãU(1)e.m. group, generated in flavor-color space byQ̃ =

Q×1−1×Q, whereQ is the electromagnetic charge generator. Then quarks of different flavors
and colors all get integral value charges, given in terms of the charge of the electron ˜e= ecosθ ,
whereθ is the mixing angle.

The existence of this “rotated" electromagnetism implies, among other things, that an external
magnetic field to the color superconductor will be able to penetrate it in the formof a “rotated"
magnetic field, and this affects the pairing phenomena [2]. Furthermore, in the presence of a strong
magnetic field one cannot consider the effects of electromagnetism as a smallperturbation. Flavors
symmetries are reduced, as bothU(1)e.m. andŨ(1)e.m. distinguish quark flavors. For sufficiently
strong magnetic fields, quark matter is in the so-calledmagneticCFL (MCFL) phase [2]. In the
MCFL phase the symmetry breaking pattern is

SU(3)C×SU(2)L ×SU(2)R×U(1)
(1)
A ×U(1)B×U(1)e.m. → SU(2)C+L+R×Ũ(1)e.m. . (2.2)

Here the symmetry groupU(1)
(1)
A is related to a current which is an anomaly free linear com-

bination ofu,d ands axial currents, and such thatU(1)
(1)
A ⊂ SU(3)A. The lockedSU(2) group

corresponds to the maximal unbroken symmetry, such that it maximizes the condensation energy.
The counting of broken generators, after taking into account the Anderson-Higgs mechanism, tells
us that there are only five Goldstone bosons. As in the CFL case, one is associated to the breaking
of the baryon symmetry; three Goldstone bosons are associated to the breaking of SU(2)A, and
another one associated to the breaking ofU(1)

(1)
A . As before, if the effects of the anomaly could be

neglected, there would be another pseudo Goldstone boson associated totheU(1)A symmetry.
An applied strong magnetic field, apart from modifying the value of some fermionic gaps, also

affects the low energy properties of the color superconductor. Thereis a reduction in the number of
Goldstone bosons, from nine to five. What happened to these four light particles of the CFL phase?

There is another question one may like to address. For which values of the magnetic field it is
more appropriate to say that quark matter is in the CFL or in the MCFL phase? Toanswer properly
this question, one should solve the whole set of gap equations for all values of the magnetic field,
a rather difficult task that requires a numerical treatment.
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There is a fast way to answer to the above questions, which may allows us to give estimates
for the transition values of magnetic field. We will study how an external magnetic field affects the
effective field theory of the low energy degrees of freedom of the CFLphase.

2.1 Effective field theory for the Goldstone bosons of the CFL phase in a magnetic field

We review here how to construct the effective field theory for the light degrees of freedom of
the CFL phase [9]. First one has to single out the phases of the diquark condensates

Xia ∼ ε i jkεabc〈ψb j
L ψck

L 〉∗ , Yia ∼ ε i jkεabc〈ψb j
R ψck

R 〉∗ (2.3)

wherea,b,c denote flavor indices,i, j,k denote color indices, andL/R denote left/right chirality,
respectively. Under anSU(3)C×SU(3)L ×SU(3)R rotation, the above fields transform as

X →ULXU†
C , Y →URYU†

C . (2.4)

The combination defined by
Σ = XY† (2.5)

is a color singlet, which underSU(3)C×SU(3)L ×SU(3)R transforms as

Σ →ULΣU†
R . (2.6)

One parametrizes the unitary matrixΣ as

Σ = exp

(
i

Φ
fπ

)
, Φ = φATA , (2.7)

whereTA are theSU(3) generators, defining the Goldstone fields as in vacuum

Φ =




π0 + 1√
3
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η8

√
2K0

√
2K− √

2K̄0 −2√
3
η8


 . (2.8)

For energy scalesE � 2∆, where∆ is the quark gap, the Lagrangian in the chiral limit for the
Goldstone fields is pretty much the same as in vacuum, with the only exception that temporal and
spatial derivatives are not related, due to the lack of Lorentz symmetry atfinite density

L =
f 2
π
4

(
Tr

(
∂0Σ∂0Σ†)−v2

πTr
(
∂iΣ∂iΣ†)) . (2.9)

For asymptotic large values of the chemical potentialµ, the parameters appearing in (2.9) can
be computed, and read [10]

f 2
π =

21−8ln2
18

µ2

2π2 , vπ =
1√
3

. (2.10)

We have ignored in all the above considerations the Goldstone boson of baryon symmetry
breaking, which will deserve a separated treatment in Section 3.
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Electromagnetic interactions can be introduced taking into account, as commented in the pre-
vious section, that they do not respect the wholeSU(3)L ×SU(3)R symmetry. To see which are
the new allowed terms in the low energy effective field theory one proceedsas follows. The quark
charge matrixQ represents an explicit breaking term of theSU(3)L ×SU(3)R symmetry in the
QCD Lagrangian. In order to see its effects in the low energy physics, one treatsQ as a spurion
field, whose vacuum expectation value is the responsible of the symmetry breaking. To restore the
symmetry one has to introduce left and right charge matrices, which transform as

QL →ULQLU†
L , QR →URQRU†

R , (2.11)

under aSU(3)L ×SU(3)R transformation.
Then, the derivatives in Eq. (2.9) should become covariant derivatives

∂µΣ → D̃µΣ = ∂µΣ− iẽQLÃµΣ+ iẽΣQRÃµ . (2.12)

Using simple considerations one can see that also a term of the sort Tr
(
QLΣQRΣ†

)
is allowed by

the symmetries in the Lagrangian. Thus, it reads [12]

L =
ε̃
2

Ẽ
2− 1

2λ̃
B̃2

+
f 2
π
4

[
Tr

(
D̃0ΣD̃0Σ†

)
−v2

πTr
(

D̃iΣD̃iΣ†
)]

+CTr
(
QΣQΣ†) , (2.13)

Here, again, we have taken into account that spatial and temporal components ofF̃µν go separately.

The value of̃ε ≈ 1+ 2
9π2

ẽ2µ2

∆2 , andλ̃ ≈ 1 are obtained after integrating out the high energy fermionic
modes [12], and represent an effective dielectric constant and magnetic susceptibility, respectively.

If one uses the value ofQ = e(2/3,−1/3,−1/3), one easily recognizes that the last term of
(2.13) is a mass term for the charged Goldstone bosons, plus additional meson contact interactions.
More particularly, one finds

M2
π± = M2

K± =
2ẽ2C

f 2
π

. (2.14)

The value ofC could be in principle computed at high baryonic density [11]. However, it requires
to evaluate a complicated three-loop diagram. An estimate of the diagram [11], together with
dimensional analysis, suggests thatM2

π± = M2
K± ∼ ẽ2∆2.

In writing Eq.(2.13) one assumes a particular power counting. The chiral Lagrangian is written
as an expansion in momenta, and here only the lowest order terms have beenkept. With this
counting, one assumesp2/ f 2

π ∼ ẽ2.
We will now assume the existence of an external weak magnetic fieldB̃ext, and see the modifi-

cations in the chiral Lagrangian (2.13). The presence of an external field brings a new dimensional
scale in the problem. For the low energy theory to make sense, one then has toassume that the field
is such thatp2 ∼ ẽB̃ext.

One can get the effective field theory for the Goldstone bosons in the presence of the mag-
netic field from (2.13), simply by splitting all the vector gauge fields into a background part and a
fluctuating part

Ãµ → Ãext
µ + Ãµ , (2.15)
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where, for example, one can takeÃext
µ = (0,0,xB̃ext,0) to reproduce a magnetic field pointing in the

zdirection.
With the established power counting rules and symmetry transformation ofQL/R, it is not

difficult to see new terms entering into the low energy Lagrangian. We will however now neglect
the effect of electromagnetic fluctuations, and consider the direct effects of the external magnetic
field, assuming ˜e2 � p2/ f 2

π ∼ ẽB̃ext/ f 2
π . It is not difficult to see that a new term in the chiral

Lagrangian is allowed, namely

D(B̃ext · B̃ext)Tr
(
QΣQΣ†) . (2.16)

As before, this essentially represents a mass term for the charged Goldstone bosons

M2
π± = M2

K± =
(ẽB̃ext)2

f 2
π

D , (2.17)

plus additional contact interactions. Here,D should be computed from the microscopic theory. It
is an adimensional number, and for the power counting to make sense, it should be of orderO(1).

All these considerations assume a weak magnetic field, so that the power counting rules are
valid. But one can imagine increasing the value of the external field. As suggested by Eq. (2.17),
this would imply an increase of the charged Goldstone boson masses. By strengthening the field
more and more, the charged pions and kaons become heavier and heavier. It will reach one point
when they will become unstable. This will happen when they have a mass of order 2∆, the energy
necessary to break a Cooper pair of quarks. If we extrapolate the value of the mass of the charged
Goldstone bosons from weak to strong fields, this happens when

ẽB̃ext ∼ 2 fπ∆ , (2.18)

assuming thatD is of orderO(1). To get an idea of the values of the magnetic field we are get-
ting, we will use the value offπ of Eq. (2.10), forµ ∼ 400 MeV, and∆ ∼ 25 MeV. One gets
ẽB̃ext ∼ 5 ·1016 G. For those values of the magnetic field, the system will be formed by only five
neutral Goldstone bosons. This is precisely the number predicted from thesymmetry considera-
tions explained in the previous subsection. We can deduce that for the above values of the magnetic
field, it will more appropriate to say that quark matter is in the MCFL phase.

3. Transport in the CFL phase at low temperature

The BCS theory explains the main phenomenological properties of electromagnetic supercon-
ductors, such as the Meissner effect, and the appearance of an energy gap∆ in the quasiparticle
spectrum. It also explains the reason why superconductors are both good heat conductors and su-
perfluids, with exponentially suppressed transport coefficients∼ exp[−∆/T] for low temperatures
T � ∆.

Should we expect the transport coefficients in a color superconductorto behave as in an elec-
tromagnetic superconductor? Naively, one would say so, but the answer is slightly more elaborated.
Because the hydrodynamic regime of a system depends on the low energy spectrum of the theory,
a careful study of the low energy properties of every color superconducting phase is needed before
evaluating transport coefficients.
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Transport properties in the CFL phase of QCD at lowT are not dominated by the quarks,
which certainly give a contribution of the sort∼ exp[−∆/T], as the electrons in an electromagnetic
superconductor. There are many light degrees of freedom in the CFL phase whose contribution
is bigger: nine Goldstone bosons (or five in the presence of a strong magnetic field!), and the
“rotated" photon. In a possible CFL quark star at finite temperature leptons are thermally excited,
so one may also expect to find electrons. In principle, neutrinos should aswell be considered for
transport. However, for the astrophysical applications we have in mind, inthe temperature regime
we are going to consider all the neutrinos have already escaped from thestar, as it is deduced from
their mean free path [13, 14].

Chiral symmetry is not an exact symmetry of QCD. Therefore, the associated (pseudo) Gold-
stone bosons are massive. Their masses are estimated to be in the range of the tens of MeV [10].
At sufficiently low temperatures (T � ∆,mπ ) their contribution to the viscosities is Boltzmann
suppressed, and transport is dominated by the lightest particles. In particular, the highest contribu-
tion [8] is given by the Goldstone boson associated to baryon symmetry breaking, the superfluid
phonon, which remains massless. There is also a contribution of the in-mediumelectromagnetism,
but this turns out to be negligible. In Ref. [3] the mean free path and shearviscosity for the super-
fluid phonon were computed, finding many similarities with those of the superfluidphonon in He4.
Here we will try to explain why this is so. For all the considerations in this section, we will neglect
the effects of an external magnetic field.

3.1 Effective field theory for the superfluid phonon

Superfluidity in He4 is understood as a consequence of Bose-Einstein condensation (BEC).
The BEC and CFL superfluids have in principle very little in common - the first system is bosonic
and non-relativistic, while the second one is fermionic and relativistic. However, in the two systems
there is a spontaneous breaking of a globalU(1) symmetry, associated to particle density in one
case, to baryon charge in the other. Hence, there is a massless collectivemode or Goldstone boson
in the two cases. We will call it in the two cases superfuid phonon.1

For the two systems one can use the techniques of effective field theory to learn about the self-
interactions of the superfluid phonons. The low energy Lagrangian is constructed using a power
expansion in momenta, taking into account properly the underlying unbroken symmetries of the
system. In a BEC the phononϕ appears as the phase of the boson condensate. Galilean invariance
implies that the Lagrangian is expressed in terms of powers of(∂0ϕ − (∇ϕ)2

2m ) [15]. In the CFL
system the phonon appears as a phase of the diquark condensate. Lorentz invariance would be a
symmetry of the system if it were not for the presence of the chemical potential µ. One can treat
µ as a spurion field, and then one sees that effective Lagrangian for thephonon in this case can be
organized as a power expansion inDµϕ = ∂µϕ −Aµ , whereAµ = (µ,0) [18].

The specific coefficients of the effective Lagrangian in each case should be determined from
the microscopic theory by a matching procedure. However, this matching actually can only be
performed in the weak coupling regime of the theory. When the system is not weakly coupled, one

1The name of phonon was chosen by Landau, when he “guessed" thata collective mode with a linear dispersion
relation was needed to explain the superfluid behavior of He4. More frequently now “phonon" is used to denote the
Goldstone boson associated to the spontaneous breaking of a translational symmetry, as it occurs in crystals.

7011/7

P
o
S
(
J
H
W
2
0
0
5
)
0
1
1



Low energy properties of color-flavor locked superconductors Cristina Manuel

can still write down an effective field theory for the low energy degrees of freedom, and expect
to have an experimental result to determine the values of those coefficients.This is the situation
that occurs for the mesons of QCD at vacuum, for example, where the value fπ is only determined
experimentally.

In the CFL case the matching procedure can be performed for very largedensities, the result
is [18]

L
CFL
eff =

3
4π2

[
(∂0ϕ −µ)2− (∇ϕ)2]2

+ · · · (3.1)

For a BEC superfluid the effective phonon Lagrangian reads [17]

L
BEC
eff = c1

(
∂0ϕ − (∇ϕ)2

2m

)
+

c2

2

(
∂0ϕ − (∇ϕ)2

2m

)2

+ · · · (3.2)

For a weakly interacting bosonic system the parametersc1 andc2 can be computed from the micro-
scopic theory [17], and are given in terms of the bosonic particle densityc1 = n0, and thes-wave
scattering lengtha, c2 = 1/4πa. Let us mention that a similar effective field theory, keeping not
only the Goldstone boson, but also the quantum fluctuations of the bosonic density has been de-
rived in Refs. [15, 16]. Eq. (3.2) is obtained from those if one furtherintegrates out the density
fluctuations.

We re-scaleϕ to get the standard kinetic term in both (3.1) and (3.2) to obtain

L
CFL
eff =

1
2
(∂0φ)2− v2

2
(∇φ)2− π

9µ2 ∂0φ(∂µφ∂ µφ)+
π2

108µ4(∂µφ∂ µφ)2 , (3.3)

and

L
BEC
eff =

1
2
(∂0φ)2− v2

2
(∇φ)2− 1

2m
√

c2
∂0φ(∇φ)2 +

1
8m2c2

(∇φ)4 , (3.4)

respectively. In the two cases, we have omitted a total time derivative, whichis only needed to
study vortex configurations. To lowest order in momenta, the superfuid phonon dispersion relation
reads

Ep = vp (3.5)

where, in the two cases,v is given by the speed of sound of the system. More particularly, in
the CFL casev2 = 1/3, while for the BECv2 = c1/mc2. It is curious to note that even in a non-
relativistic BEC the physics of the phonon is relativistic.

At low temperature the dissipation in both the CFL and BEC superfluids will be dominated
by the thermal properties of the superfluid phonons, such as damping, scattering rates, mean free
paths. These can be computed from the effective field theories displayedabove.

Let us first see how the one-loop thermal physics is obtained. We will use the imaginary time
formalism (ITF) for the evaluation of the Feynman diagrams. There are two different diagrams that
contribute to the one-loop self-energy, see Fig. 1. For external momentumP = (p0,p) = (iω ,p),
these are

Π(a)(P) =
∫

ddK
(2π)d H(P,K)S(K) , (3.6)

and

Π(b)(P) =
∫

ddK
(2π)d

(
F(P,K)S(K)S(P−K)

)
, (3.7)
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Figure 1: One-loop contributions to the phonon self-energy.

respectively, whereS is the phonon propagator. In ITF, with momentumK = (k0,k) = (iωn,k), it
reads

S(K) ≡ 1

ω2
n +E2

k

, (3.8)

whereωn = 2πnT, with n ∈ Z , is a bosonic Matsubara frequency. The functionsH andF are
slightly different for the CFL and BEC superfluids. More particularly, in the first case, one has

HCFL(P,K) =
π2

27µ4

(
2(K ·P)2 +P2K2) , (3.9)

FCFL(P,K) =
4π2

81µ4

(
p0(2K ·P−K2)+k0(P

2−2K ·P)
)2

, (3.10)

while for the BEC
HBEC(P,K) =

1
m2c2

(
2(k ·p)2 + p2k2) , (3.11)

FBEC(P,K) =
1

m2c2

(
p0(2k ·p−k2)+k0(p2−2k ·p)

)2
. (3.12)

The BEC functions are simply obtained by replacing the four momenta by three momenta of the
CFL functions, apart from an overall factor.

Since the phonon is a Goldstone boson, and thermal effects do not represent an explicit break-
ing of theU(1) symmetry, its self-energy should vanish atP = 0. It is actually easy to check that
this holds at one-loop level

Π(a)(P = 0) = Π(b)(P = 0) = 0 , (3.13)

so no thermal mass is generated. This property of the self-energy shouldhold to all orders in
perturbation theory.

The physics associated to the superfluid phonon is peculiar. Even if at finite T almost all
particles attain a thermal mass, this is not so for the phonon, as thermal effects do not represent
a violation of theU(1) symmetry. The superfluid phonon suffers Landau damping, which for
p0, p� T reads

ImΠ(p0,p) ≈ 8π5

1215
T4

v8µ4

p3
0

p
Θ(v2p2− p2

0) . (3.14)

for the CFL superfluid, while for the BEC superfluid one gets

ImΠ(p0,p) ≈− π3

6m2

T4

v8c2

p3
0

p
Θ(v2p2− p2

0) . (3.15)
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Evaluating this imaginary time on-shell, one finds the superfluid phonon lifetime in the thermal
bath. In the last case, one matches old results obtained using different techniques [19].

In the same way, one can start computing the mean free path associated to different phonon-
phonon collisions. Large-angle collisions in the two cases scale with the temperature as∼ 1/T9.
Small-angle collisions also scale in the two cases as∼ 1/T5. With the explanations in this Section,
now one may understand the claims of Ref. [3]. There it was mentioned that the superfluid phonon
in the CFL system had the same temperature dependence in the damping, and alsoin the mean free
path for small and large angle collisions that in superfluid He4, in its low temperature regime [20].

Still, there is a difference in the shear viscosity of the two systems, as we explain in the
following subsection.

3.2 Shear viscosity in the phonon fluid

Landau proposed the two fluid model of superfluidity [21], deriving the corresponding non-
relativistic hydrodynamic equations. He incorporated the effects of dissipation, taking into account
viscosity. It is noteworthy that in the superfluid there is one shear viscositycoefficient, but two bulk
viscosities, associated to the fact that there are two fluid velocities. The relativistic version of these
hydrodynamic equations are slightly more involved. They have been worked out in Ref. [22].

There are several subtle points in the computation of transport coefficient in the low tempera-
ture regime of these superfluids. Here we will only discuss the shear viscosity computation.

Prior to the computation of a transport coefficient, one has to evaluate the mean free path
of the collisions which are relevant for the corresponding transport phenomena. Shear viscosity
describes the relaxation of the momentum components perpendicular to the direction of transport,
and it usually requires large-angle collisions. However, the computation ofthis transport coefficient
becomes complicated by the fact that the differential cross section of binary collisions mediated by
phonon exchange is divergent for small-angle collisions. This is the typical Coulomb-Rutherford
collinear divergence induced by massless exchange. In an ordinary scalar theory such a divergence
does not appear, as a thermal mass is generated even if the boson is massless in vacuum. But the
phonon remains massless at finite temperature. In Ref. [3] we have suggested that the divergence is
regulated by the finite width of the phonon, or more precisely, by Landau damping, a process only
occurring in a thermal bath. After regularization, we find that small-angle processes have a shorter
mean free path than large-angle ones. This suggests that they might be morerelevant for viscosity,
as a large-angle collision can always be achieved by the addition of many small-angle ones.

To compute the shear viscosity one solves the Boltzmann equation, linearizing itfor small
departures from equilibrium. Then one finds that zero mode occurs in the collision operator for
small-angle collisions. This happens both for the BEC superfluid [20], as for the CFL superfuid
[3]. These zero modes act on the direction of suppressing the small-anglecollision contribution to
the shear viscosity.

In the CFL superfluid, this suppression is very severe. Could this be changed by considering
higher order effects, not contained in the lowest low energy Lagrangian (3.3)? In Ref. [23] the
superfluid phonon dispersion relation was computed to higher order, finding

ω(k) = vk

[
1− 11

540
k2

∆2 +O

(
k4

∆4

)]
. (3.16)
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As k is increased, the phonons move slower, with the tendency of suppressingcollinear splitting (a
phonon cannot decay into two phonons of larger joint energy), and then the small-angle processes
are kinematically forbidden. We then found a shear viscosity coefficient [3]

η = 1.3·10−4·µ8

T5 MeV3 . (3.17)

In superfluid He4, the value of mean free path for shear viscosity is however compatible with
that of small-angle collisions [20]. This led to Maris to propose a different dispersion relation for
the superfluid phonon [20]

ω(k) = vk[1+g(k)] . (3.18)

with g(k) a positive function that tends to zero fork→ 0. In this way, phonons with high momenta
move faster than those of low momenta, and can decay into two slower phonons. Maris proposed
different functionsg(k) which more or less fit the experimental value of the shear viscosity, al-
though the choices seem to be rather arbitrary, and not physically motivated.

Effective field theory techniques should be more appropriated to tackle thecomputation of
transport coefficients in a BEC at low temperature. In a weakly coupled system,g(k) could be
computed from the microscopic theory to a high level of accuracy. In a strongly coupled sys-
tem, probablyg(k) can be determined experimentally. We hope to report in the future about this
approach to transport phenomena in a BEC.

4. Conclusions

Determination of the low energy properties are essential for any study of signatures of color
superconductivity in astrophysical scenarios.

We have stressed that a strong magnetic field, such as those that might be found in the core of
some highly magnetized compact stars, has dramatic consequences for the low energy properties
of a color superconductor, through the disappearance of low energymodes from the spectrum. The
influence of this fact on some macroscopic properties of the superconductor has still to be analyzed.

We have presented a computation of the shear viscosity in the CFL phase. For the analysis of
r-mode instabilities bulk viscosity coefficients are also necessary, and have not yet been computed.

For astrophysical applications, we should emphasize the following. At sufficiently low T the
phonon mean free path would exceed the radius of a compact star. We cangive a crude estimate of
the temperature when this will occur, simply by considering the equation

R< L ∼ µ4/T5 . (4.1)

If the quark chemical potential is of orderµ ∼ 500 MeV, and we considerR∼ 10 km, we find that
for T < 0.06 MeV superfluid phonons do not scatter within the star. Transport coefficients could
then be dominated by the tiny contribution of the in-medium electromagnetism, but anevaluation
of the photon mean free path also shows that forT ∼ 0.02 MeV it also exceeds the radius of the
star. Below that temperature, CFL quark matter in the star would behave as a perfect superfluid,
showing then no dissipation, as a hydrodynamical description of the phonon and electron fluids
would be meaningless.
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In a rotating superfluid there are vortices. To study the rotational properties of a hypothetical
CFL quark star, one cannot obviate that fact. In view of our results, theanalysis of r-mode insta-
bilities of a CFL quark star should then be redone, taking into account both the temperature regime
of the star, and the vortex dynamics of the CFL phase.

Acknowledgments

I would like to thank the organizers of this conference for giving me the opportunity to par-
ticipate in this vivid meeting, as well as my collaborators E. Ferrer, V. de la Incera, A. Dobado, F.
Llanes-Estrada and A. Rios. This work has been supported by MEC under grant No. FPA2004-
00996.

References

[1] M. Alford, K. Rajagopal and F. Wilczek, “Color-flavor locking and chiral symmetry breaking in high
density,” Nucl. Phys.B537, 443 (1999). [arXiv:hep-ph/9804403].

[2] E. J. Ferrer, V. de la Incera and C. Manuel,“Magnetic color flavor locking phase in high density
QCD,” Phys. Rev. Lett.95, 152002 (2005) [arXiv:hep-ph/0503162].

[3] C. Manuel, A. Dobado and F. J. Llanes-Estrada, “Shear viscosity in a CFL quark star,”, JHEP09, 076
(2005) [arXiv:hep-ph/0406058].

[4] D. Lai, “Matter in Strong Magnetic Fields,”Rev. Mod. Phys. 73, 629 (2001) [arXiv:astro-ph/0009333].

[5] N. Andersson, “A new class of unstable modes of rotating relativistic stars,” Astrophys. J.502, 708
(1998). [arXiv:gr-qc/9706075].

[6] J. Madsen,“Probing strange stars and color superconductivity by r-mode instabilities in millisecond
pulsars,” Phys. Rev. Lett.85, 10 (2000).[arXiv:astro-ph/9912418].

[7] D. F. Litim and C. Manuel,“Transport theory for a two-flavor color superconductor,”Phys. Rev. Lett.
87, 052002 (2001). [arXiv:hep-ph/0103092].

[8] I. A. Shovkovy and P. J. Ellis,“Thermal conductivity of dense quark matter and cooling of stars,”
Phys. Rev.C66, 015802 (2002). [arXiv:hep-ph/0204132].

[9] R. Casalbuoni and R. Gatto,“Effective theory for color-flavor locking in high density QCD,” Phys.
Lett. B464(1999) 111 [arXiv:hep-ph/9908227].

[10] D. T. Son and M. A. Stephanov,“Inverse meson mass ordering in color-flavor-locking phaseof high
density QCD,”Phys. Rev.D61, 074012 (2000) [arXiv:hep-ph/9910491]; Phys. Rev.D62, 059902
(2000) [hep-ph/0004095].

[11] C. Manuel and M. H. Tytgat,“Sum rules in the CFL phase of QCD at finite density,”Phys. Lett. B
501, 200 (2001) [arXiv:hep-ph/0010274].

[12] D. F. Litim and C. Manuel, “Photon self-energy in a color superconductor,” Phys. Rev. D64, 094013
(2001) [arXiv:hep-ph/0105165].

[13] S. Reddy, M. Sadzikowski and M. Tachibana,“Neutrino rates in color flavor locked quark matter,”
Nucl. Phys. A714, 337 (2003) [arXiv:nucl-th/0203011].

[14] P. Jaikumar, M. Prakash and T. Schafer,“Neutrino emission from Goldstone modes in dense quark
matter,” Phys. Rev. D66, 063003 (2002) [arXiv:astro-ph/0203088].

12011/12

P
o
S
(
J
H
W
2
0
0
5
)
0
1
1



Low energy properties of color-flavor locked superconductors Cristina Manuel

[15] V. N. Popov, “Functional Integrals in Quantum Field Theory and Statistical Physics," (Reidel,
Dordrecht, 1983).

[16] W. V. Liu, “Effective field theory approach to Bose-Einstein condensation,” Int. J. Mod. Phys. B12
(1998) 2103.

[17] J. O. Andersen,“Effective Field Theory for Goldstone Bosons in Nonrelativistic Superfluids,’’
[arXiv:cond-mat/0209243].

[18] D. T. Son,“Low-energy quantum effective action for relativistic superfluids,”
[arXiv:hep-ph/0204199].

[19] P. C. Hohenberg and P. C. Martin,“Microscopic theory of superfluid helium, Ann. Phys. (N.Y.)34,
291 (1965).

[20] H. J. Maris,“Hydrodynamics of Superfluid Helium below 0.6 K. Viscosity of the Normal Fluid", Phys.
Rev. A8, 1980 (1973).

[21] L. Landau and Lifschitz, “Statistical Physics" vol. 5;“Fluid Mechanics” vol. 6, Prentince Hall, New
Jersey.

[22] V. V. Lebedev and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz.56, 1601 (1982); B. Carter and I. M.
Khalatnikov, Rev. Math. Phys.6, 277 (1994)

[23] K. Zarembo,“Dispersion laws for Goldstone bosons in a color superconductor,” Phys. Rev. D62,
054003 (2000) [arXiv:hep-ph/0002123].

13011/13

P
o
S
(
J
H
W
2
0
0
5
)
0
1
1


