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1. Introduction

Although the issue of the deconfinement phase transition in strongly interacting matter can be
addressed with first principle calculation in lattice field theory, it is of interest to see what can be
obtained regarding the chiral symmetry restoration aspect of the transition within effective models
sharing the same global symmetry as QCD. For vanishing chemical potential universality classes of
the transitions of strongly interacting matter were predicted by effective models for three corners of
the mu � d � ms–plane: the exact SU(3) chiral limit (mu � d � s � 0), the two flavor chiral case (mu � d � 0 �
ms

� ∞) and the pure gauge theory (mu � d � s � ∞). As a consequence of the compatibility of the
conclusions there has to be also a tricritical point (TCP) on the mu � d � 0 line [1]. Apart from these
corners and mu � d � 0 axis no universal arguments exist and the order of the transition for different
values of the chemical potentials (baryonic, isospin) and quark masses, as well as the shape of the
transition line between regions of crossover and first order transitions are a matter of calculation.

It is expected that at vanishing baryonic chemical potential for low values of the masses there
is a line of second order phase transitions as a boundary of the first order phase transition region.
Increasing the value of µB the second order line sweeps along a critical surface. Theoretically it
is important to map the phase-diagram as a function of the parameters of QCD, and also there can
be experimentally accessible interesting points, like the critical end point (CEP) occurring at finite
µB, for physical values of the quark masses.

Apart from helping the mapping out of the QCD phase transition, the effective models can
give insights in the interplay between chiral and UA

�
1 � symmetry restoration, and how meson and

baryon properties change during the chiral transition. They can tell us what is the soft mode at the
CEP, and by predicting specific signatures they might help finding its actual location [2]. They can
also give information on the non-equilibrium dynamics near TCP or CEP [3, 4].

Effective models play also an important role whenever particle physics is applied to cosmo-
logical or astrophysical studies. In cosmology, it is in important to know what the cold dark matter
is made of. The relic density of one of the candidates, the weakly interacting massive particles
(WIMPs), depends on the variation of the number of relativistic degrees of freedom and the energy
density of the universe. It was shown in [5] that if WIMPs freeze out in the range of the QCD tran-
sition temperature the prediction of their relic concentration depends on the QCD equation of state,
which below Tc is taken from an effective model. In astrophysics the structure of compact stars is
actively investigated due to increasingly available new data that indirectly provides information on
the state of matter in their core. At present effective models are the only tools for determining the
equation of state of strongly interacting matter at very low temperature and high density.

In the present article a brief overview of some of the effective models will be given, and then
some recent results on the issues enumerated in the Abstract will be summarised.

2. Effective chiral models

A common feature of the effective models is that they are constructed using the global chiral
symmetry of the massless QCD and its spontaneous symmetry breaking pattern SUL

�
3 ��� SUR

�
3 �	�

SUV
�
3 � . For equal quark-masses the four-divergence of the vector current vanishes, while the
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divergence of the axial vector current vanishes only in the massless case:

∂µ � q̄γµλ aq � � i q̄ � M � λa � q � q̄i
�
mi

� m j � λ a
i jq j � (2.1)

∂µ � q̄γµγ5λ aq � � i q̄ � λa � M � γ5q � q̄i
�
mi � m j � λ a

i jγ5q j �
where for three flavors M � diag

�
mu � md � ms � and there is an order parameter (OP), the chiral con-

densate � 0 �	� Qa
A � q̄γ5λ bq � � 0 
 � � 1

2
� 0 � q̄ � λa � λ b � q � 0 
 � � 2

3
δab � 0 � q̄q � 0 
 , which when vanishes indi-

cates the restoration of chiral symmetry.
The Lagrangian contains explicit symmetry breaking terms of two kinds. One is the quark

mass term, or in the linear sigma model the term containing the external sources, which gives mass
to the pseudo-Goldstone bosons. The other type is the instanton motivated ’t Hooft determinant
which breaks the UA

�
1 � symmetry.

The effective models are built upon mesons and/or baryons with the lowest mass and are
expected to be most relevant in case of a crossover transition when the mesons are well defined
degrees of freedom even above the pseudo-critical temperature or in case of a second order phase
transition where the change of the order parameter is directly accessible.

The effective models differ essentially from QCD in that they miss the mechanism for confine-
ment and incorporate only the degrees of freedom thought to be relevant for the chiral transition.
Because of this latter feature it is very important to have a faithful, fine-tuned parametrisation of
any effective model. I mention, however, that recently there have been studies [6], [7] that included
confinement in chiral models through an effective potential (see [8]) constructed with its (approxi-
mate) order parameter, the Polyakov loop, in an attempt to give account of the lattice result which
shows that both chiral and deconfinement transitions happen at about the same temperature [9].
The chiral perturbation theory–ChPT

Chiral perturbation theory [10] describes exactly the low energy dynamics of the Goldstone
particles collected in a hermitian traceless matrix Φ

�
x � :

Φ
�
x � �

��
 π0 ��� 2 � η8
��� 6 π � K �

π � � π0 � � 2 � η8
� � 6 K0

K � K̄0 � 2η8
��� 6

������ (2.2)

The most general Lagrangian invariant under SUL
�
3 � � SUR

�
3 � chiral symmetry is written down in

terms of the exponential of Φ, U
�
Φ � � ei � 2Φ � f and appears as a systematic expansion in momenta

and quark masses:�
SU � 3 �

ChPT

�
U � � ∑

n

�
2n
� f 2

4
Tr
�
∂µU†∂ µU � � f 2B0

2
Tr
�
MU† � UM† � ��� �

p4 � � (2.3)

In the general UL
�
3 � � UR

�
3 � case [11] this is more complicated because each term of (2.3) can

be multiplied by some function of η0
� � i f log detU � � 6 (in this case U � ei � � 2Φ � η0λ 0 � � f ). What

is important for us from the point of view of the parametrisation of the linear sigma model in the
mπ � mK–plane is that ChPT determines the mπ and mK dependence of the decay constants for
pions ( fπ ) and the kaons ( fK ) as well as of M2

η
� m2

η � m2
η ! :

fπ
� f " 1 � 1

f 2

�
2µπ � µK

� 4m2
π
�
L4 � L5 � � 8m2

KL4 �$# � (2.4)
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fK
� f " 1 � 1

f 2 � 3
4

�
µπ � µη � 2µK � � 4m2

πL4
� 4m2

K
�
L5 � 2L4 ��� # � (2.5)

M2
η
� 2m2

K
� 3v � 2 �

0 � 2
�
2m2

K � m2
π �
�
3v � 2 �

2
� v � 1 �

3 � � 1
f 2 � 8v � 2 �

0

�
2m2

K � m2
π �
�
L5 � 3L4 �� m2

π
�
µη � 3µπ � � 4m2

Kµη � 16
3

�
6L8

� 3L5 � 8L7 �
�
m2

π
� m2

K � 2� 32
3

L6
�
m4

π
� 2m4

K � m2
Km2

π � � 16
3

L7
�
m2

π � 2m2
K � 2 � � (2.6)

where µPS : � m2
PS

32π2 ln
m2

PS

M2
0

are the so–called chiral logarithms, determined at an appropriate scale

(e.g. M0
� 4π f ) by the masses of the members of the pseudoscalar octet. f is the pion decay

constant in the chiral limit. The low energy constants Li are determined by the values of the masses
and decay constants taken in the physical point.
The Nambu–Jona-Lasinio (NJL) model

The Lagrangian of the chiral SU
�
3 � symmetric NJL model is written in terms of the current

quarks with mass matrix m̂ � diag
�
mu � md � ms ��

SU3
NJL

� q̄
�
i∂� � m̂ � q � gS

2

8

∑
a � 0

� � q̄λaq � 2 � �
q̄iγ5λ aq � 2 � � gD � det � q̄

�
1 � γ5 � q � � det � q̄

�
1 � γ5 � q ��� �

(2.7)
The determinant term breaks the UA

�
1 � symmetry while the second term is invariant under chiral

U(3) group transformations. For two flavors the determinant term can be rewritten as

2 � det � q̄
�
1 � γ5 � q � � det � q̄

�
1 � γ5 � q � � � � � q̄q �2 � �

q̄�τq � 2 � �
q̄iγ5q � 2 � �

q̄iγ5 �τq � 2 � �
and by taking equal couplings gD

� gS 	 G one arrives at the original form of the NJL Lagrangian
[12]:

�
SU2

NJL
� q̄

�
i∂� � m̂ � q � G� � q̄q �2 � �

q̄iγ5 �τq � 2 � � (2.8)

This is invariant under axial transformations q ��
 1 � 1
2 i �α �
�τγ5 � q since q̄q � q̄q � �α � q̄i�τγ5q and

q̄i�τγ5q � q̄i�τγ5q � �α q̄q. In the mean-field approximation the square of the quark bilinear is lin-
earised with the replacement

�
q̄q �2 � 2 � q̄q 
 � q̄q � � � q̄q 
2 and the vacuum expectation value of the

quark bilinear, the order parameter, determines the constituent quark mass M for which the self-
consistent gap-equation reads:

M � mud
� 2G � q̄q 
 � mud � 2NcN f G ���

p
� �

Λ

M�
p2 � M2

� 1 � nq
�
T � µ � � n q̄

�
T � µ � � � (2.9)

The natural, mesonic degrees of freedom π � σ are obtained through the procedure of bosonisation.
Monitoring the expectation value � q̄q 
 , one can study the restoration of chiral symmetry. For a
review of recent developments in the NJL model see [13] and references therein.
The linear sigma model (LσM)

The Lagrangian of the linear sigma model with symmetry breaking terms is constructed in
terms of a N f � N f complex matrix M � Ta

�
σa � iπa � which contains scalar (σa) as well as pseudo-

scalar (πa) fields [14]. For Nf � 4 the Lagrangian reads:
�

M
� tr

�
∂µ M†∂ µM � µ2

0 M†M � � f1tr2 � M†M � � f2tr
�
M†M � 2 � g 
 detM � detM† � � trH

�
M � M† � �

(2.10)
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For N f
� 3 the generators Ta are proportional to the Gell-Mann matrices. There are two independent

quartic couplings f1 and f2. The explicit symmetry breaking term contains the external fields ha

(H � Taha) which gives mass to the pseudo-Goldstone bosons. The role of the determinant term is
to break the chiral U

�
N f � symmetry down to SU

�
N f � .

In the broken symmetry phase the scalars associated with the diagonal generators display
vacuum expectation values. Considering only the case of degenerate u, d quarks one has for two,
three, and four flavors one, two, or three condensates, called non-strange, strange and charmed
condensates, respectively.

It is important to stress that the determinant term enters with a relative opposite sign into the
expressions of the tree-level masses of scalars and pseudo-scalars:� m2

S
�
σ̄ � � ab

� µ2
0 δab

� 6 � δN f � 2 � ab � δN f � 3 � abcσ̄c
� � 4 ��� abcd � δN f � 4 � abcd

� σ̄cσ̄d �� m2
P

�
σ̄ � � ab

� µ2
0 δab � 6 � δN f � 2 � ab � δN f � 3 � abcσ̄c

� � 4 � � abcd
� δN f � 4 � abcd

� σ̄cσ̄d � (2.11)

The various tensors appearing in (2.11) are explicitly given in [15]. The parameters of the model
are determined using the zero temperature mass spectra and decay constants. For the case N f

� 3
this will be explained in Section 7.
O(N) model

For two flavors the 8 d.o.f. of the complex matrix M introduced previously form a reducible
representation of SUL

�
2 � � SUR

�
2 � . The irreducible representations are given by two O(4) multi-

plets
�
σ � π � and

�
a0 � η � , whose masses are split by the determinant term: m2

η
� m2

π
� 2g � m2

a0
�

m2
σ
� 2g � 2 f1σ̄0. Assuming that the

�
a0 � η � multiplet is heavier (formally g � ∞) one can neglect

it, (integrate it out) and one arrives at the O(4) model. An equivalent formulation is to use instead
of general complex matrices unitary matrices with positive determinant M � σ1 � i �π � �τ written
with the help of sigma and pion fields [16]. If one increases the number of pions and rescales the
couplings in such a way that the energy density is proportional to the number of d.o.f. per site
( � N2) and the masses stay finite ( � N0), one obtains a form of the Lagrangian suitable for a large
N approximation (see the meson part in the Lagrangian (2.12), below).
The chiral constituent quark model

This model extends the LσM by including some effective fermionic degrees of freedom, the
constituent quarks. For a large N treatment SUL

�
2 � � SUR

�
2 � LσM model is extended to N f flavors,

that is the number of pions is increased and the appearance of an other quartic coupling is disre-
garded. The constituent quark mass is generated by the scalar condensate. In the broken symmetry
phase characterised by the vacuum expectation value Φ, the Lagrangian is parameterised in a way
to be used in a large N approximation. Fermions couple with a Yukawa coupling to the mesons:�

CQM
� � " λ

24
Φ4 � 1

2
m2Φ2 # N � " λ

6
Φ3 � m2Φ � h # σ � N � 1

2 � � ∂ µ σ � 2 � �
∂ µπa � 2 �

� 1
2 � m2 � λ

2
Φ2 � σ 2 � 1

2 � m2 � λ
6

Φ2 � πaπa � λ
6 � N

Φ � σ 3 � σπaπa � � λ
24N � σ 2 � πaπa � 2

� ψ̄
�
x � " i∂ µ γµ � mq

� g� N

 σ �

x � � i
�

2N f γ5T aπa � x � � # ψ
�
x � � (2.12)

where mq
� gΦ and Φ

�
0 � � fπ

� 2. This parametrisation was obtained by requiring that the fermion
mass stays finite as N � ∞. We can see that due to the large N treatment the fermion coupling
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to the pions is enhanced over the sigma. The fermion contribution is of order 1 � � N and thus it
precedes in an 1 � N expansion the NLO meson contribution, which is of order 1 � N.

3. Solving the effective models, thermodynamics

Since the perturbation theory fails to account for non-trivial features of phase transitions, re-
summation of perturbative series is needed. Such method is the optimised perturbation theory
(OPT) proposed in [17]. It consists of introducing into the Lagrangian a temperature dependent
mass with the change � µ2

0 � M2 � T � and treating the difference between this and the original one
as a finite counter-term ∆m2 � M2 � T � � µ2

0 :�
mass

� � 1
2

M2 � T � Tr Φ†Φ � 1
2

∆MTr Φ†Φ � (3.1)

The introduced mass-term is fixed through the Principle of Minimal Sensitivity by requiring that
the one loop pion-mass defined at zero external momentum, calculated using tree-level masses in
the propagators appearing in the self-energy, equals the tree level mass for the pions:

M2
π
�
T � � iG � 1 � p � 0 � T ���� 1-loop

� � m2
π
�
T ���� tree

� ∆m2 � ∑
k l

G kk

f ikkj

G kk

G ll

+ p=0
lkj

g
g

ikl

!� m2
π
�
T � ���� tree

(3.2)
This results in a self-consistent gap equation for the pions, since all the other tree level masses can
be expressed with the pion mass and the vacuum expectation values:

m2
π
�
T � � � µ2

0 � 2
�
2 f1 � f2 � x2 � 4 f1y2 � 2gy � α � σ � π

∑
i � π � K � η � η ! cπ

αi
Itp
�
mαi

�
T � � � (3.3)

The summation is understood over the members of both the scalar and pseudoscalar multiplets.
In oder to determine the order of the phase transition the gap-equation (3.3) has to be solved

simultaneously with the equations of state which read as:

� εx
� µ2

0 x � 2gxy � 4 f1xy2 � 2
�
2 f1 � f2 � x3 � ∑α � σ � π

i � π � K � η � η ! Jitx
αi

Itp
�
mαi

�
T � � � 0 � (3.4)

� εy
� µ2

0 y � gx2 � 4 f1x2y � 4
�
f1 � f2 � y3 � ∑α � σ � π

i � π � K � η � η ! Jit
y
αiItp

�
mαi

�
T � � � 0 � (3.5)

where the weights tx
αi

and ty
αi of the tadpoles and the isospin multiplicity factors Ji are listed in

Appendix C of [19]. The renormalization was discussed in [17] (see also [18]). With the definition
of the mass given in (3.2) only tadpole type integrals appear, and the only complication is due to
the mixing sector where the eigenstates are the η and η � , and σ and f0 respectively. Because OPT
does not modify the form of the relations upon which the Goldstone theorem relies, this method
preserve the Goldstone theorem for the pions. However, as explained in [19] resumming only one
parameter in this model with two order parameters has the consequence that the Goldstone theorem
for kaons is not satisfied at finite T.

Another (approximate) solution of the linear sigma model was given using the Hartree approx-
imation within the CJT formalism [20], see also [21]. Using Euclidean metric, we illustrate this
method for the case of the O(N) model with an explicit symmetry breaking external field, in the
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large N approximation. For the chiral SU
�
N � symmetry there is an additional complication due to

the mixing sectors. The effective potential parameterised with the vacuum expectation value Φ and
the dressed pion propagator Gπ , includes all the diagrams that do not become disconnected upon
cutting two lines (in the Hartree approximation only the pion “double scoop” diagram arises)

V � Φ � Gπ
� � N " m2

2
Φ2 � λ

24
Φ4 � hΦ # � N � 1

2
" �

β
lnG � 1

π
�
Φ;k � � �

β � � π � 1 � Φ;k � Gπ
�
Φ;k � � 1 � #

� λ
�
N2 � 1 �
24N

" �
β

Gπ
�
Φ;k �$# 2 � (3.6)

The vacuum expectation value and the dressed propagator are determined from the two stationarity

conditions
δV � Φ � Gπ

�
δGπ

� 0 � δV � Φ � Gπ
�

δΦ
� 0. The first one gives a Dyson-Schwinger equation

G � 1
π
�
Φ;k � � �

π � 1 � Φ;k � � λ
6
�

β
Gπ

�
Φ;k � � k2 � m2 � λ

6
Φ2 � λ

6
�

β
Gπ

�
Φ;k � � (3.7)

and since the self energy is momentum independent, with the parametrisation Gπ
�
Φ;k � � 1

k2 � M2
π

one arrives at a gap equation for the resummed pion mass: M2
π
� m2 � λ

6
Φ2 � λ

6
�

β

1
k2 � M2

π
�

The second condition gives the equation of state:" m2 � λ
6

Φ2 � λ
6
�

β

1
k2 � M2

# Φ � h � (3.8)

We see from the gap equation (3.7) and the equation of state (3.8) that in the large N approximation
M2

π
� h � Φ, that is Goldstone’s theorem is satisfied. This is not the case in general because it is

known that without the large N approximation Hartree approximation has two problems: it gives
first order (instead of second order) phase transition in the chiral limit and Goldstone’s theorem is
not fulfilled.

The last method for solving an effective model which we discuss now is the large N approxi-
mation applied here to the chiral constituent quark model of Sec. 2. We have solved this model in
the leading order of the large N approximation by taking the fermions into account perturbatively at
one loop order [22], although there is an infinite series of diagrams containing fermions and giving
contribution at order 1 � � N of the large N expansion.

Imposing a gap equation for the pions which performs the resummation of daisy–type dia-
grams one obtains the temperature dependence of the order parameter by simultaneously solving
the gap equation and the equation of state:

gap equation: M2 � � iG � 1
π
�
p � 0 � � m2 � λ

6
Φ2 � λ

6
TB
�
M � � 4

g2Nc� N
TF
�
mq �

EoS: V �eff
�
Φ � � Φ " m2 � λ

6

 Φ2 � TB

�
M � � � 4g2Nc� N

TF
�
mq � # � h � 0

����������
Goldstone
theorem

M2 � h
Φ

.

TB � F are the temperature-dependent pion and fermion tadpole integrals, respectively (mq
� gΦ).

The form of the σ propagator can be inferred from the consistency condition � iG � 1
σ
�
p � 0 � �

d2Veff
�
Φ � � dΦ2:

G � 1
σ
�
p � � p2 � h

Φ
� 2Φ2

λ
6
� 4g4Nc� N

IF
�
p � mq �

1 � λ
6 IB

�
p � M � � (3.9)
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where IB � F are the temperature-dependent pion and fermion one-loop “fish” integrals. Analytically
continuing the sigma propagator to the second Riemann sheet the couplings were determined by
requiring that the ratio of the real and imaginary parts of the sigma pole on this sheet is close to
phenomenologically expected ratio of the mass to width of the sigma particle mσ

� Γσ � 1, while
keeping the mass of the sigma in the range mσ

� �
400 � 800 � MeV. The Yukawa coupling g is

fixed by the constituent quark mass (one third of the nucleon mass) and fπ : g � mq
� Φ

�
0 � � 6 � 72.

Consistency of the T � 0 σ -pole with phenomenological values of mσ and Γσ requires λ � 400.
Once the couplings are fixed one returns to the solution at finite temperature/density.

4. Restoration of chiral and axial symmetry

We start the discussion with the effects of the restoration of chiral symmetry as felt by the
sigma excitation.

In an effective theory the sigma particle is the quantum fluctuation of the amplitude of the
chiral order parameter, hence any change in the ground state of the system is reflected upon its
properties. Sigma couples strongly to the pions, measurable through the σ � 2π decay. Because
of this, at T � 0 sigma shows up as a broad resonance in the scalar–isoscalar channel. Hatsuda and
Kunihiro conjectured [23] that since the sigma mass decreases during chiral symmetry restoration,
the available phase space for σ � 2π squeezes, therefore one has a chance to see the sigma as a
sharp resonance in matter. Observing the changes in the sigma one can infer features of the chiral
symmetry restoration.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
T/mπ(0)

λR=400

2mπ(T)/fπ
T**

T*

Re p0/fπ for the complex solution
solutions on the real axis 
of the 2nd sheet
solution on the real axis of the 1st sheet

Figure 1: The temperature dependence if the real part of the sigma pole.

Following with the increasing temperature the trajectory of the complex sigma pole on the
second Riemann sheet obtained in the O(N) model, with the help of the LO of the large N approx-
imation, one can see that the real part of the sigma goes below the value of the two pion threshold
at T

� �

� 0 � 69mπ
�
0 � � 96 � 6 MeV, which means the suppression of the σ � 2π decay channel [24].

This happens at a lower temperature than T
�

� 1 � 07mπ
�
0 � , where σ is converted into a stable par-

ticle. So, for T � T
� �

sigma is indeed a sharper resonance compared with the vacuum case. This
scenario differs from the one in [25] where the pole that goes through the threshold is not connected
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with the complex sigma pole at T � 0. By assuming certain analytic properties of the propagator,
we have shown that there are universal features of the spectral function when a pole corresponding
to a particle at high temperature approaches in the complex energy plane with the variation of the
temperature the threshold position of its two-body decay [26].

It is interesting to note, that the value of the temperature where mσ
� 2mπ is quite close to

what was found within the composite operator formalism applied to the QCD: T
� � � 0 � 95Tc � 98

MeV [27]. Another interesting point is that within the large N formalism the mass of the sigma
appears to be rather low (at NLO it is about 350 MeV, [28]).

The restoration of the chiral and axial symmetries was studied recently by many authors, using
both the linear sigma model [29, 30],[15] and NJL [31]. The method of these studies was to identify
the chiral partners and observe the convergence of their masses. The chiral partners are

�
π � σ � ,�

η � a0 � in the case of chiral SU(2) symmetry and
�
π � a0 � ,

�
K � κ � , � η � σ � in the case of chiral SU(3)

symmetry. The results of these investigations can be summarised as follows.
The scalar masses decrease at first but then start to increase during the transition while the

pseudoscalar masses stay constant for a long while then increase monotonically with the tempera-
ture during the transition. The masses grow more rapidly when N f increases, and there is a tendency
of the chiral partners towards degeneracy at some T � Tc. In the absence of UA

�
1 � anomaly Tc de-

creases, and the degeneracy is more rapidly reached. The melting of the strange condensate is
much slower compared with the non-strange one.

For the effect of the U
�
1 � anomaly it was found that in the chiral limit with(out) UA

�
1 � anomaly

the transition temperature increases (decreases) with N f in contrast to (in agreement with) the
QCD lattice results which according to [9] give for N f

� 2
�
3 � Tc � 173

�
154 � MeV. This signals

that the anomaly is rapidly decreasing near the transition temperature. Indeed, this decrease can
be observed, since the finite temperature lattice result on topological susceptibility [32] can be
converted into the temperature-dependence of the strength of the determinant term, gD

�
T � by fitting

the lattice result with the explicit formula of the susceptibility calculated in NJL [33]. In this case
the determinant term decreases not only due to the very slow melting of the strange condensate,
but also due to the decrease of gD

�
T � . Hence UA

�
1 � symmetry is restored and the degeneracy

of the SU(3) chiral partners is completed. Without the restoration of the UA
�
1 � symmetry the

degeneracy among parity partners arises only at very high temperature at which the determinant
term would eventually vanish due to the vanishing of the strange condensate. (We have to recall
that the determinant enters with opposite sign into the expressions of the scalar and pseudoscalar
masses.)

5. µB � T phase diagram for N f � 2

The left hand side figure of Fig. 2 shows a generic phase diagram typical for those obtained
with effective models. In particular this figure was obtained for the chiral limit, solved in the
LO of the large N approximation, with the fermions taken into account perturbatively at one
loop order [22]. The emerging diagram is qualitatively correct, but when compared with lat-
tice results, one observes that the transition temperature is too low (the lattice result of [34] is
Tc
�
µB

� 0 � � 173
�
8 � MeV) and the present estimate for TCP is presumably located at a too high

chemical potential. The transition line, which is a parabola, and the location of TCP can be obtained
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Figure 2: L.h.s.: The µB � T phase diagram of the constituent quark model in the chiral limit. R.h.s:
Comparison of the CQM result from [22] with lattice results (from top to bottom): N f � 2 [35], N f � 3 [36],
N f � 4 [37] (the original figure was taken from [36]).

analytically in terms of polylogarithms:

2nd order+spinodal line m2 � � λ
6 � g2Nc � T 2

c

12 � g2µ2
q

2π2N f
Nc

� 0 �

2nd order line ends when
λ
6 � g4Nc

4π2 " ∂
∂n

�
Lin � 1

z
� � Lin

�
z ��� ��� n � 0

� ln
cTc

M0
# � 0

� �������� � TTCP

µTCP �
These formulae are obtained by expanding the equation of state in a power series of the expectation
value and by taking the coefficient of the linear and cubic terms, which correspond to the quadratic
and quartic terms of the effective potential. In the formulae above � z � e

µq
Tc (the fugacity), c �

2e1 � γE , Nc
� 3, and M0 is the renormalisation scale.

The curvature of the line of second order phase transitions at µq
� 0 is Tc

2
d2Tc
dµ2

q

��� µq � 0

� 0 � 101,

which is somewhat higher than what is obtained on the lattice. (The masses are different, strictly
speaking there is no much sense in comparing). This can be seen also in the r.h.s. of Fig. 2 taken
from [36] in which we inserted our phase transition line (the green line which ends in the lower
right corner of the figure). The reason for this is that the large value of the Yukawa coupling lowers
the critical temperature at vanishing chemical potential and bends too strongly the transition line.
We have checked that dynamical generation of the fermion mass, e.g. solving a gap equation for it,
lowers the effective Yukawa coupling. This result and the fact that according to Fig. 2 the line of
the reduced temperatures lies within 10% of the lattice result, mean that it might be worth thinking
about a more complete inclusion of fermions, e.g. beyond one loop order.

By looking at different effective approaches published in the literature (see a list in [38]) we
can see that all give low values for the temperature and high values for the chemical potential at
TCP or CEP when compared with the result of Fodor and Katz [39]. This may be partly due to the
fact that these results are for two flavors and not 2+1 ( it was emphasised in Ref. [40] how sensitive
is the dependence of the critical value of µB on the value of the quark masses). But this also raises
a conceptual problem of whether the QCD phase transition is driven by the chiral symmetry.
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As was shown recently in [41] using renormalisation group techniques the inclusion of gluon
degrees of freedom proves to be important at T � 150 MeV if one wants to compare the equation
of state of the effective model with the one obtained on the lattice.

The conclusion of the resonance gas model (which includes the resonances with mass up to
2 GeV) is that the phase transition is driven by the higher excited hadrons rather than by the light
degrees of freedom ( see [42] for µB

� 0 at N f
� 2 � 1, [43] for µB �� 0 at N f

� 2, and [44] for
µB �� 0 at N f

� 2 � 1). This model managed to reproduce the temperature dependence of the energy
density measured on the lattice. It is interesting that a pion gas would give only 15% of the critical
energy density at the transition temperature. Imposing constant energy density the resonance gas
model also reproduced the phase boundary measured on the lattice using Taylor expansion in µB.

The discrepancy between the freeze-out curve and phase boundary obtained with the resonance
gas model shows that there are strong interactions between baryons and mesons when the density of
the baryons exceeds the density of mesons and without interactions this model is not able to account
for how criticality occurs at CEP. However, assuming constant entropy density the resonance gas
model reproduces the freeze-out curve [45].

I conclude that the investigation of the phase-diagram in the µB
� T plane with an effective

chiral 3-flavor model (NJL or LσM) is definitely of interest.

6. The nature of the soft mode

In the physical point of the quark mass-plane a critical end point was found on lattice [39] at a
finite value of the chemical potential and the question is what causes criticality. At the critical end
point two minima and a maximum meet which results in a very flat effective potential of the chiral
order parameter Φ. This is shown also by the diverging peak of the scalar susceptibility dΦ � dh.
This flattening of the effective potential does not necessarily imply the appearance of a gapless
sigma mode (sigma meson with vanishing mass). This is because the non-interchangeability of
two limits 1 : q-limit (ω � 0, then q � 0), which applies to static quantities as the curvature of the
effective potential, and ω-limit (q � 0, then ω � 0), which applies to the study of a sigma pole at
rest on the second Riemann sheet (resonance).

It was argued in Ref. [46] that what is important from the point of view of the signature
of the genuinely singular end point is the dynamical feature rather than the static one. The time
during which the correlation length ξ reaches its equilibrium diverges as τ � ξ z (critical slowing
down), where z is the dynamic scaling exponent. The finite evolution time limits the correlation
length to ξ �

�
time � 1 � z. Because z � 1 and in heavy-ion collision the evolution times are of the

same order as the spatial size, it is the finite time of the evolution rather than the spatial size
limitation (ξ � size), which imposes a limit on the value of ξ . This is why, it is important to find
the dynamical universality class CEP belongs to, according to the classification of [47], and also
the correct identification of the soft mode, the mode whose characteristic frequency vanishes at
CEP, and which determines the characteristic time of the evolution.

1Using the relevant finite temperature expressions, one can easily prove that although, by definition, the bosonic
one-loop bubble integral with equal masses is related at zero external four-momentum q ��� ω � q � to the bosonic tad-pole
integral through IB � q � 0 � M ��� dTB � M ��� dM2 , this relation holds only in the q-limit, not in the ω-limit.
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I refer the reader to the literature in questions which concern the hydrodynamical nature of the
soft mode, in presence of conserved baryon number and energy densities, and on the demonstration
that the dynamic universality class of CEP is that of model H, i.e. the liquid-gas phase transition
[47], [46], [48]. Here I will discuss what can be found about the nature of the soft mode with model
calculations focusing on the scalar order parameter.

In the O(4) model without explicit symmetry breaking there is a genuine second order tran-
sition accompanied by a change in the symmetry of the ground state. Here, what is responsible
for the critical behaviour and dynamical scaling is the pole in the sigma channel [49]. Following
the trajectory of the sigma pole (corresponding to the particle a rest) of the analytically continued
Green’s function on the second Riemann sheet, it turns out that the pole arrives on the imaginary
axis, splits up into two poles, and the one that goes to the origin will produce critical scaling. In the
vicinity of the critical point the dynamical scaling and the equation for the soft mode were given in
[49] (see also the references therein).

In the 2 flavor constituent quark model in the chiral limit, along the line of the chiral critical
points, the soft mode is also the sigma meson, which becomes the degenerate chiral partner of the
massless pions. The sigma pole on the 2nd Riemann sheet goes to the origin as the order parameter
Φ
�
T � goes to zero. The real and imaginary parts of the pole scale as Rep0 � Φ

�
T � , Imp0 � Φ2 � T � ,

where Φ � �
T � Tc � β . For β the mean-field exponent was obtained [22] : β � 1 � 2 for the second

order line and β � 1 � 4 at the tricritical point. The case of TCP is interesting because it prompts
the question of what kind of singular behaviour might appear additionally there, where the sigma
meson mode is already gapless (see below).

For the physical pion mass and two flavors no symmetry change of the ground state accompa-
nies the second order transition at CEP and in consequence from the point of view of the symmetry
the existence of CEP is accidental. Both in CQM [50] and NJL [51] the sigma pole stays massive,
and a peak develops in the scalar isoscalar spectral function in the space-like region ω � � q � . The
location of its maximum goes to zero as the momentum goes to zero and it diverges in the q-limit.

In the context of the NJL model what is responsible for the behaviour seen in the spectral
functions is an imaginary pole of the scalar susceptibility (χmm

� d2F
�
T � µ � � dm2

ud
� d � q̄q 
 � dmud ,

where F
�
T � µ � is the free energy density) that goes to the origin as � q � � 0 (diffusive mode) [51].

In consequence the soft mode is the fluctuation of the scalar density. To study the relative weight
of the diffusive mode in the susceptibility, the ratio R � �

χmm
�
0 � 0 � � � χmm

�
0 � � 0 � � � χmm

�
0 � 0 � �

was introduced, where the numerator is the difference between the q-limit and ω-limit. When the
diffusive mode is absent R � 0. Because there is no contribution from the diffusive mode in the
second term of the numerator, when the diffusive mode dominates R � 1. By studying this ratio R,
it was shown in [48] that the switch of the soft mode from the sigma meson mode to the diffusive
mode (hydrodynamical mode) occurs at the tricritical point, where R � 1.

7. The boundary of the first order phase transition in the mπ � mK–plane

There are several lattice studies of thermodynamics with varying degenerate quarks mu
� md

�
ms, which show that the value of mc

PS on the boundary drops substantially when improved lattice
actions are used, namely from mc

π � 290 MeV [52] or mc
π � 270 MeV [53] to mc

π
� 67

�
18 � MeV

[54] or ever further down to mc
π � 65 MeV [55] (see also the talk by O. Philipsen at this meeting). In
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view of this result we can think that the linear sigma model might complement lattice investigations
if its coupling parameters can be determined accurately because the lighter are the pseudoscalars
the better should become the approximate description based on LσM. This model was claimed to
give a low value for the critical pion mass: mc

π
� 51 MeV [56] or mc

π
� 47 MeV [57] (see also

[30]). In these investigations only the Goldstone mass was tuned by varying the explicit symmetry
breaking terms and the other parameters were kept fixed at their values determined in the physical
point.

We have used ChPT when moving away from the physical point [19] for the determination of
the pion and kaon decay constants and M2

η
� m2

η � m2
η ! , to obtain the value of the couplings at each

point of the mπ � mK–plane (see Eqs. (2.4), (2.5), and (2.6)). Below I present schematically how
the process of the parametrisation is performed at zero temperature.

input: output: prediction:

fπ

fK

�
�
�

x

y

mπ

mK

M2
η

������ �
�

g

f2

M2

������������������
�
�

mη

mη !
θη

ma0

mκ

A1 & M2

A2 & M2

�
�
�

µ2
0

f1

�
�
�

mσ

m f0

θσ

Ex
� 0

Ey
� 0

�
�
�

hx

hy

The strange and non-strange condensates are determined through the PCAC relations x � fπ ,
y � �

2 fK
� fπ � � � 2, while the masses determine the couplings (for the explicit formulae see [29]

or [19]). The predicted values of mη and m �η are in remarkable agreement with the values of these
masses given by ChPT up to mK

� 800 MeV, even for vanishing pion mass. Unfortunately, at
tree-level, in the pseudoscalar sector one of the quartic couplings, f1 and the mass parameter µ2

0

appear only in the combination M2 � � µ2
0 � 4 f1

�
x2 � y2 � . To disentangle them we have to use also

the scalar sector. Since the dependence of scalar masses on mπ and mK is not known, we need to
make assumptions, which diminish the predictive power of our solution. This can be seen in Fig. 3
which shows the boundary of the first order transition region on the

�
mπ � mK � -plane for various

assumptions made for the continuation of the scalar mass spectrum. We expect that the exact phase
boundary curve lies in the light-grey shaded region.

Our rough estimate for the critical pion mass on the diagonal is mcrit
�
diag � � 40 � 20 MeV, in

nice agreement with the results of the latest effective model and lattice studies. In order to be able
to use the tree-level parametrisation we used a quasi-particle approximation, that is we neglected
the finite parts of the T � 0 quantum fluctuations. We note, that we were not able to locate the TCP
on the mu � d � 0 axis. Recently a work performed in the NJL model found the TCP at the critical
value of mc

s
� 10 MeV [58], which is much lower than expected when extrapolating lattice results.
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8. Conclusions

In this contribution we reviewed some of the results obtained with effective models of QCD
on the chiral symmetry restoration. We have shown that one can parameterise the linear sigma
model in the entire mπ � mK–plane employing the results of the chiral perturbation theory. We
have determined the boundary of the first order phase transition line which is below mc

π
� 65 MeV.

For a more reliable determination of the boundary, information on the quark-mass dependence of
the scalar sector is needed.

We have shown that effective models correctly describe the changes of the meson properties
during the chiral transition and indicate that UA

�
1 � has to be restored as a prerequisite for restoration

of SU
�
3 � chiral symmetry. The sigma meson is the soft mode at the critical point of the O(4) model

with massless pions, and in both the 2 flavor constituent quark model and NJL model in the chiral
limit along the line of the chiral critical points, but stays massive at CEP. At CEP the role of the
chiral symmetry is rather secondary, here the soft mode has a hydrodynamical nature.

An analytical determination of the µ � T phase boundary was given for two flavors in the chiral
limit. The obtained phase diagram is qualitatively correct, but the transition temperature is low and
the value of the chemical potential at TCP/CEP is apparently too high. Light mesonic degrees of
freedom, usually included into effective theories of QCD do not seem to be the single driving force
behind the transition. In view of this, the extension of the 3-flavor chiral quark model to finite
density is of imminent importance. It would be also interesting to develop large N techniques for
SUL

�
N � � SUR

�
N � chiral models, since this approach has some advantage when used together with

other resummation techniques (2PI or Dyson-Schwinger).
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